Skip to main content

Measuring the Roughness Exponent of One-Dimensional Interfaces

  • Chapter
  • First Online:
Ferroelectric Domain Walls

Part of the book series: Springer Theses ((Springer Theses))

  • 1379 Accesses

Abstract

Since the pioneering work of Mandelbrot et al. demonstrating the self-affine nature of cracks in metals [1], a significant number of different methods were established and used to estimate the roughness exponent of self-affine interfaces, focusing in particular on fracture surfaces [2, 3]. In all of these methods, complete knowledge of the interface position is assumed, allowing the roughness exponent to be estimated, either indirectly by determining the fractal dimension or directly through dedicated self-affine analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using the fact that the 1D interface and the (\(1+1\)) directed polymer problems are exactly mappable one onto each other [5].

References

  1. B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Fractal character of fracture surfaces of metals. Nature 308, 721 (1984)

    Article  ADS  Google Scholar 

  2. K.J. Måløy, A. Hansen, E.L. Hinrichsen, S. Roux, Experimental measurements of the roughness of brittle cracks. Phys. Rev. Lett. 68, 213 (1992)

    Article  ADS  Google Scholar 

  3. J. Schmittbuhl, F. Schmitt, C. Scholz, Scaling invariance of crack surfaces. J. Geophys. Res. 100, 5953 (1995)

    Article  ADS  Google Scholar 

  4. J. Schmittbuhl, J.-P. Vilotte, S. Roux, Reliability of self-affine measurements. Phys. Rev. E 51, 131 (1995)

    Article  ADS  Google Scholar 

  5. M. Mézard, G. Parisi, Manifolds in random media: two extreme cases. J. de Phys. I 2, 2231 (1992)

    Google Scholar 

  6. S. Santucci, K.J. Måløy, A. Delaplace, J. Mathiesen, A. Hansen, J.Ø.H. Bakke, J. Schmittbuhl, L. Vanel, R. Purusattam, Statistics of fracture surfaces. Phys. Rev. E 75, 016104 (2007)

    Article  ADS  Google Scholar 

  7. S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, P. Le Doussal, Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849 (1998)

    Article  ADS  Google Scholar 

  8. P. Paruch, T. Giamarchi, J.-M. Triscone, Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films, ed. by K. Rabe, C.H. Ahn, J.-M. Triscone. Physics of Ferroelectrics, a Modern Perspective (Springer, Berlin, 2007), p. 339

    Google Scholar 

  9. T. Natterman, S. Stepanow, L.-H. Tang, H. Leschhorn, Dynamics of interface depinning in a disordered medium. J. de Phys. II 2, 1483 (1992)

    ADS  Google Scholar 

  10. A. Rosso, A.K. Hartmann, W. Krauth, Depinning of elastic manifolds. Phys. Rev. Lett. 67, 021602 (2003)

    ADS  Google Scholar 

  11. H. Leschhorn, L.-H. Tang, Comment on “elastic string in a random potential”. Phys. Rev. 70, 2973 (1993)

    ADS  Google Scholar 

  12. J.M. López, M.A. Rodrìguez, R. Cuerno, Superroughening versus intrinsic anomalous scaling of surfaces. Phys. Rev. E 56, 56 (1997)

    Google Scholar 

  13. J.M. López, J. Schmittbuhl, Anomalous scaling of fracture surfaces. Phys. Rev. E 57, 6405 (1998)

    Article  ADS  Google Scholar 

  14. J.J. Ramasco, J.M. López, M.A. Rodríguez, Generic dynamic scaling in kinetic roughening. Phys. Rev. Lett. 84, 2199 (2000)

    Article  ADS  Google Scholar 

  15. S. Bustingorry, A.B. Kolton, T. Giamarchi, Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films. Phys. Rev. B 85, 214416 (2012)

    Article  ADS  Google Scholar 

  16. V.V. Randoshkin, Magnetic-field dependence of the domain wall velocity in uniaxial films of iron garnets with various dampings. Sov. Phys. - Solid State 37, 355 (1995)

    ADS  Google Scholar 

  17. V.Ya. Shur, A. Gruverman, N.Yu. Ponomarev, E.L. Rumyantsev, N.A. Tonkacheva, Domain structure kinetics in ultrafast polarization switching in lead germanate. JETP Lett. 53, 615 (1991)

    ADS  Google Scholar 

  18. M. Dawber, A. Gruverman, J.F. Scott, Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets. J. Phys.: Condens. Matter 18, L71 (2006)

    ADS  Google Scholar 

  19. B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.-H. Kim, S.V. Kalinin, Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics. Phys. Rev. Lett. 98, 247603 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Guyonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guyonnet, J. (2014). Measuring the Roughness Exponent of One-Dimensional Interfaces. In: Ferroelectric Domain Walls. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05750-7_7

Download citation

Publish with us

Policies and ethics