Skip to main content

Microbial Consortia, a Viable Alternative for Cleanup of Contaminated Soils

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

The growth population and anthropogenic activity are constantly threatening the environment caused by the accumulation of different kinds of pollutants in the biosphere, especially in soils and sediments. Co-contaminated of environment with toxic organic and inorganic substance is often actually. For the remediation of soils contaminated with mainly petroleum, pesticide and heavy metals, several physical or chemical techniques have been developed inadequately. Inside the technologies “eco-friendly remediation,” the bioremediation have emerged as an option using natural biological activity. Bioremediation are methods where microorganisms degrade one or various pollutants to nontoxic compounds, so working individually or coordinately inside a microbial consortium. A microbial consortium is the natural association of two or more microbial populations of different species, which act together in a complex system. The success of a bioremediation process with pure cultures is very low and restricted. Therefore, use of a microbial consortium appears to be more feasible and reliable.

The chapter aims to review of the techniques for the elimination or degradation of pollutants using microbial consortia and highlight the importance of microbial consortia assessment. Also afford a discussion on the application of these techniques to the development of strategies and remediation policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amezcua-Allieri MA, Lead JR, Rodríguez-Vázquez R (2005) Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs. Chemosphere 61:484–491

    Article  PubMed  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC et al (2005) Compartive bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. BioresTechnol 96:1049–1055

    CAS  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 9:483–489

    Article  Google Scholar 

  • Brock D, Madigan M (2000) Microbiología, 8th edn. Prentice Hall Hispanoamericana, Mexico

    Google Scholar 

  • Budzinski H, Raymond N, Nadalig T et al (1998) Aerobic biodegradation of alkylated aromatic hydrocarbons by a bacterial community. Org Geochem 28:337–348

    Article  CAS  Google Scholar 

  • Casellas M, Grifoll M, Sabate J et al (1998) Isolation and characterization of a 9-fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a consortium. Can J Microbiol 44:734–742

    CAS  Google Scholar 

  • Chatterjee S, Chattopadhyay P, Roy S et al (2008) Bioremediation: a tool for cleaning polluted environments. J App Biosci 11:594–601

    Google Scholar 

  • De Souza RB, Maziviero TG, Christofoletti CA et al (2013) Soil contamination with heavy metals and petroleum derivates: impact on edaphic fauna and remediation strategies. In: Hernandez Soriano MC (ed) Soil processes and current trends in quality assessment. Intech, Rijeka

    Google Scholar 

  • Fang J, Sun PD, Xu SJ et al (2012) Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism. Bioresour Technol 121:379–385

    Article  PubMed  CAS  Google Scholar 

  • Fantroussi SE, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  PubMed  Google Scholar 

  • Fernandes VC, Albergaria JT, Oliva-Teles T et al (2009) Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20:375–382

    Article  PubMed  CAS  Google Scholar 

  • Foght J, Semple K, Gauthier C et al (1999) Effect of nitrogen source on biodegradation of crude oil by a defined bacterial consortium incubated under cold, marine conditions. Environ Technol 20:839–849

    Article  CAS  Google Scholar 

  • Fredriksson NJ, Hermansson M, Wilén BM (2013) The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS One 8(10):e76431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gallego JR, Loredo J, Llamas JF et al (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335

    Article  PubMed  CAS  Google Scholar 

  • Gaw SK, Palmera G, Kimb ND, Wilkinsa AL (2003) Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region, New Zealand. Environ Pollut 122:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hamer G (1997) Microbial consortia for multiple pollutant biodegradation. Pure Appl Chem 69:2343–2356

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S et al (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DR, Okan JL, Sandrin TR (2005) Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation. Chemosphere 59:919–927

    Article  PubMed  CAS  Google Scholar 

  • Hooper D, Solan M, Symstad A et al (2002) Species diversity, functional diversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning, synthesis and perspectives. Oxford University Press, Oxford, pp 195–281

    Google Scholar 

  • Jiménez DJ, Korenblum E, van Elsas JD (2013) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5253-7

    PubMed  Google Scholar 

  • Junier P, Kim OS, Hadas O et al (2008) Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples. Appl Environ Microbiol 74:5231–5236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kästner M (2000) Humification: process or formation of refractory soil organic matter. In: Klein J (ed) Biotechnology. Environmental processes II. Soil decontamination. Wiley-VCH, Weinheim, pp 89–126

    Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  PubMed  CAS  Google Scholar 

  • Kieu HT, Horn H, Müller E (2013) The effect of heavy metals on microbial community structure of a sulfidogenic consortium in anaerobic semi-continuous stirred tank reactors. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1012-5

    PubMed  Google Scholar 

  • Kuo CW, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacteria consortia. Appl Environ Microbiol 62:2317–2323

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lin Q, Zhaowei W, Ma S et al (2006) Evaluation of dissipation mechanisms by Lolium. perenne L, and Raphanus. sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci. Total Environ 36:814–822

    Article  CAS  Google Scholar 

  • Liu TF, Sun C, Hong TJ et al (2007) Effect of copper on the degradation of pesticides cypermethrin and cyhalothrin. J Environ Sci 19:1235–1238

    Article  CAS  Google Scholar 

  • Mahmood S, Freitag TE, Prosser JI (2006) Comparison of PCR primer-based strategies for characterization of ammonia oxidizer communities in environmental samples. FEMS Microbiol Ecol 56:482–493

    Article  PubMed  CAS  Google Scholar 

  • Martínez MA, Romero H, Peroti NI (2013) Two amplicon sequencing strategies revealed different facets of the prokaryotic community associated with the anaerobic treatment of vinasses from ethanol distilleries. Biores Technol. doi:10.1016/j.biortech.2013.12.030

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nannipieri P, Badalucco L (2003) Processes in the soil-plant system: modelling concepts and applications. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nettmann E, Bergmann I, Pramschüfer S et al (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76:2540–2548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health, NERI Technical Report No. 388, National Environmental Research Institute, Copenhagen, Denmark

    Google Scholar 

  • Ochoa Carreño DC, Montoya RA (2010) Microbial consortia: a biological metaphor applied to enterprise association in agricultural production chains. Rev Fac Cienc Econ 18:55–74

    Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  PubMed  PubMed Central  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of co-contaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Röling WF, Milner MG, Jones M et al (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruberto L, Dias R, Lo Balbo A et al (2009) Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol 106:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311–316

    Article  PubMed  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspective. Genet Eng Biotechnol J 2010:1–20

    Google Scholar 

  • Stallwood B, Shears J, Williams PA et al (2005) Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802

    Article  PubMed  CAS  Google Scholar 

  • Stursová M, Zifčáková L, Leigh MB et al (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746

    Article  PubMed  Google Scholar 

  • Sugiura KM, Ishihara T, Shimauchi T et al (1997) Physicochemical properties and biodegradability of crude oil. Environ Sci Technol 31:45–51

    Article  CAS  Google Scholar 

  • Templeton D, Ariese F, Cornelis R et al (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl Chem 72:1453–1470

    Article  CAS  Google Scholar 

  • Thassitou PK, Arvanitoyannis IS (2001) Bioremediation: a novel approach to food waste management. Trends Food Sci Technol 12:185–196

    Article  CAS  Google Scholar 

  • Tongarun R, Luepromchai E, Vangnai AS (2008) Natural attenuation, biostimulation and bioaugmentation in 4-chloroaniline-contaminated soil. Curr Microbiol 56:182–188

    Article  PubMed  CAS  Google Scholar 

  • Van den Abbeele P, Grootaert C, Marzorati M et al (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and clostridium cluster IX. Appl Environ Microbiol 76:5237–5246

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Zwieten L, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut 124:331–339

    Article  PubMed  Google Scholar 

  • Velasco JA, Volke Sepúlveda TL (2003) El composteo: una alternativa ecológica para la biorremediación de suelos en México. Gaceta Ecol 66:41–53

    Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 7:1163–1172

    Article  Google Scholar 

  • Villegas LB, Amoroso MJ, Figueroa LIC (2011) Interaction of copper or chromium with yeasts: potential application on polluted environmental clean up. In: Mason AC (ed) Bioremediation: biotechnology, engineering and environmental management. Nova Science Publisher, New York

    Google Scholar 

  • Villegas LB, Pereira CE, Colin VL et al (2013a) The effects of sulphate and phosphate ions on Cr(VI) reduction by Streptomyces sp. MC1, including studies of growth and pleomorphism. Int Biodeter Biodegr 82:149–156

    Article  CAS  Google Scholar 

  • Villegas LB, Rodríguez A, Pereira CE et al (2013b) Cultural factors affecting heavy metals removal by actinobacteria. In: Amoroso MJ, Benimeli CS, Cuozzo SA (eds) Actinobacteria, application in bioremediation and production of industrial enzymes. CRC PressI Llc, Boca Raton, FL

    Google Scholar 

  • Wu T, Crapper M (2009) Simulation of biopile processes using a hydraulics approach. J Hazar Mat 171:1103–1111

    Article  CAS  Google Scholar 

  • Yu SH, Ke L, Wong YS et al (2005) Degradation of polycyclic aromatic (PAHs) by a bacterial consortium enriched from mangrove sediments. Environ Int 32:149–154

    Article  Google Scholar 

  • Zakrzewski M, Goesmann A, Jaenicke S et al (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258

    Article  PubMed  CAS  Google Scholar 

  • Zanaroli G, Di Toro S, Todaro D et al (2010) Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb Cell Fact 9:10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Beatriz Villegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villegas, L.B., Martínez, M.A., Rodríguez, A., Amoroso, M.J. (2014). Microbial Consortia, a Viable Alternative for Cleanup of Contaminated Soils. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_8

Download citation

Publish with us

Policies and ethics