Skip to main content

Advances in Chile for the Treatment of Pesticide Residues: Biobeds Technology

  • Chapter
  • First Online:

Abstract

The widespread use of pesticides for agricultural and for nonagricultural purposes worldwide has resulted in the presence of pesticide residues in various environmental matrices. The occurrence of pesticide residues in surface waters, groundwater, and large volumes of soil is mainly due to the inadequate management of these compounds. In this context, a biobed system was developed in Sweden in response to the need for a simple and effective way to minimize environmental contamination from pesticide manipulation, particularly when filling the spraying equipment, a typical point source of contamination. Biobeds are based on the adsorption and degradation potential of organic biomixtures composed of top soil, peat, and straw that fills a deep hole in the ground and a grass layer that covers the surface. Recently, the use of biobeds has expanded to other countries in Europe and Latin America. In Chile, four biobeds similar to the European ones have been installed, making this country a pioneer in this type of decontamination system. This chapter gives a general overview of biobeds technology and the advances in research at laboratory scale related to the treatment of pesticide residues in a biobed system in Chile.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antonious G (2012) On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field. J Environ Sci Heal B 47:608–621

    Article  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC et al (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Briceño G, Fuentes MS, Palma G et al (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacterias isolated from soil. Int Biodet Biodeg 73:1–7

    Article  Google Scholar 

  • Briceño G, Pizzul L, Diez MC (2013a) Biodegradation of Pesticides by Actinobacteria and their Possible Application in Biobed Systems. In: Amoroso MJ, Benimeli CS, Cuozzo SA (eds) Actinobacteria application in bioremediation and production of industrial enzymes. Taylor & Francis, Boca Raton, FL, pp 245–255

    Google Scholar 

  • Briceño G, Fuentes MS, Rubilar O et al (2013b) Removal of insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J Basic Microbiol 53:1–10

    Article  Google Scholar 

  • Briceño G, Rubilar O, Tortella G et al (2013c) Bioaumentación de una biomezcla con actinobacterias degradadores de residuos de plaguicidas organofosforados. Workshop Internacional y Taller Nacional Valorización de Residuos, oportunidad para la innovación. Universidad de la Frontera, Pucón, Chile

    Google Scholar 

  • Castillo MP, Tortensson L (2007) Effect of biobed composition, moisture, and temperature on the degradation of pesticides. J Agric Food Chem 55:5725–5733

    Article  CAS  Google Scholar 

  • Castillo MP, Andersson A, Ander P et al (2001) Establishment of the white rot fungus Phanerochaete chrysosporium on unsterile straw of solid substrate fermentation systems intended for degradation of pesticides. World J Microbiol Biotechnol 17:627–633

    Article  CAS  Google Scholar 

  • Castillo MP, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide uses a review. J Agric Food Chem 56:6206–6219

    Article  CAS  Google Scholar 

  • Coppola L, Castillo MP, Monaci E et al (2007) Adaptation of the biobed composition for chlorpyrifos degradation to southern Europe conditions. J Agr Food Chem 55:396–401

    Article  CAS  Google Scholar 

  • Dabrowska D, Kot-Wasik A, Namieoenik J (2004) The Importance of degradation in the fate of selected organic compounds in the environment. Part II. Photodegradation and biodegradation. Pol J Environ Stud 13:617–626

    CAS  Google Scholar 

  • De Wilde T, Spanoghe P, Sniegowksi K et al (2010a) Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material. Chemosphere 78:56–60

    Article  PubMed  Google Scholar 

  • De Wilde T, Spanoghe P, Ryckeboer J et al (2010b) Transport and degradation of pesticides in a biopurification system under variable flux, part I: a microcosm study. Environ Pollut 158: 3309–3316

    Article  PubMed  Google Scholar 

  • De Wilde T, Spanoghe P, Ryckeboer J et al (2010c) Transport and degradation of pesticides in a biopurification system under variable flux, part II: a macrocosm study. Environ Pollut 158: 3317–3322

    Article  PubMed  Google Scholar 

  • Diez MC, Tortella GR (2008) Pentachlorophenol degradation in two biological systems: biobed and fixed-bed column, inoculated with the fungus Anthracophyllum discolor. The proceeding of the ISMOM, Chile

    Google Scholar 

  • Diez MC, Palma G, Altamirano C et al (2013a) Manual de construcción y operación de lechos biológicos. Universidad de La Frontera, Temuco

    Google Scholar 

  • Diez MC, Tortella G, Briceño G et al (2013b) Influence of novel lignocellulosic residues in a biobed biopurification system on the degradation of pesticides applied in repeatedly high doses. Electron J Biotechnol 16:1–11

    Article  CAS  Google Scholar 

  • Diez MC, Levio M, Briceño G et al (2013c) Biochar as a partial replacement of peat in pesticide-degrading biomixtures formulated with different soil types. J Biobased Mater Bioenergy 7:1–7

    Article  Google Scholar 

  • Dudášová H, Lukáčová L, Murínová S et al (2012) Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). Int Biodet Biodeg 69:23–27

    Article  Google Scholar 

  • Elgueta S, Campo M, Diez MC (2013) Formulación de inóculos fúngicos a partir de desechos agroforestales para la degradación de atrazina en un sistema de biopurificación. Workshop Internacional y Taller Nacional Valorización de Residuos, oportunidad para la innovación. Universidad de la Frontera, Pucón, Chile

    Google Scholar 

  • Fernández-Alberti S, Rubilar O, Tortella G et al (2012) Chlorpyrifos degradation in a Biomix: effect of pre-incubation and water holding capacity. J Soil Sci Plant Nutr 12:785–799

    Google Scholar 

  • Fogg P, Boxall A, Walker A (2003) Degradation of pesticides in biobeds: the effect of concentration and pesticide mixtures. J Agr Food Chem 51:5344–5349

    Article  CAS  Google Scholar 

  • Fogg P, Boxall A, Walker A et al (2004) Degradation and leaching potential of pesticides in biobed systems. Pest Manag Sci 60:645–654

    Article  PubMed  CAS  Google Scholar 

  • Gregoire C, Elsaesser D, Huguenot D et al (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett 7:205–231

    Article  CAS  Google Scholar 

  • Henriksen VV, Helweg A, Spliid NH et al (2003) Capacity of model biobeds to retain and degrade mecoprop and isoproturon. Pes Manag Sci 59:1076–1082

    Article  CAS  Google Scholar 

  • Husby J (2010) Introduction of the workshop. 3rd European biobed workshop, Piacenza, Italy

    Google Scholar 

  • Karanasios E, Nikolaos G, Tsiropoulos A et al (2010) Novel biomixtures based on local Mediterranean lignocellulosic materials: evaluation for use in biobed systems. Chemosphere 80:914–921

    Article  PubMed  CAS  Google Scholar 

  • Karanasios E, Tsiropoulos NG, Karpouzas DG (2012) On-farm biopurification systems for the depuration of pesticide wastewaters: recent biotechnological advances and future perspectives. Biodegradation 23:787–802

    Article  PubMed  CAS  Google Scholar 

  • Marinozzi M, Laura Coppola L, Elga Monaci E et al (2013) The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environ Sci Pollut Res 20:2546–2555

    Article  CAS  Google Scholar 

  • Niels H, Helweg A, Heinrichson K (2006) Leaching and degradation of 21 pesticides in full-scale model biobeds. Chemosphere 65:2223–2232

    Article  Google Scholar 

  • Rousk J, Brookes P, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 6:1589–1596

    Article  Google Scholar 

  • Spliid NN, Husby J (2010) New closed biobed with recirculation and evaporation for use under colder climates. 3rd European biobed workshop, Piacenza, Italy

    Google Scholar 

  • Torstensson L, Castillo MP (1997) Use of biobeds in Sweden to minimize environmental spillages from agricultural spraying equipment. Pesticide Outlook 8:24–27

    CAS  Google Scholar 

  • Tortella G, Rubilar O, Cea M et al (2010) Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination. J Soil Sci Plant Nutr 10:464–475

    Article  Google Scholar 

  • Tortella G, Rubilar O, Castillo MP et al (2012) Chlorpyrifos degradation in a biomixture of biobed at different maturity stages. Chemosphere 88:224–228

    Article  PubMed  CAS  Google Scholar 

  • Tortella GR, Durán N, Rubilar O et al (2013a) Are white-rot fungi a real biotechnological option for the improvement of environmental health? Crit Rev Biotechnol. doi:10.3109/07388551.2013.823597

    PubMed  Google Scholar 

  • Tortella GR, Mella-Herrera R, Sousa D et al (2013b) Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities. Chemosphere 93: 1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Tortella GR, Mella-Herrera T, Sousa D et al (2013c) Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. J Hazard Mater 260:459–467

    Article  PubMed  CAS  Google Scholar 

  • Tortella GR, Rubilar O, Stenström J et al (2013d) Using volatile organic compounds to enhance atrazine biodegradation in a biobed system. Biodegradation 24:711–720

    Article  PubMed  CAS  Google Scholar 

  • Tortella GR, Rubilar O, Cea M et al (2013e) Natural wastes rich in terpenes and their relevance in the matrix of an on-farm biopurification system for the biodegradation of atrazine. Int Biodeter Biodegr 85:8–15

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  PubMed  CAS  Google Scholar 

  • Urrutia C, Rubilar O, Tortella G et al (2013) Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes. Chemosphere 92:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Verhagen P, De Gelder L, Boon N (2013) Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Curr Microbiol 67:466–471

    Article  PubMed  CAS  Google Scholar 

  • Vischetti C, Capri E, Trevisan M et al (2004) Biomassbed: a biological system to reduce pesticide point contamination at farm level. Chemosphere 55:823–828

    Article  PubMed  CAS  Google Scholar 

  • Vischetti C, Coppola L, Monaci E et al (2007) Microbial impact of the pesticide chlorpyrifos in Swedish and Italian biobeds. Agron Sustain Dev 27:267–272

    Article  CAS  Google Scholar 

  • Vischetti C, Monaci E, Cardinali A et al (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72: 1739–1743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Center of Research and Development for Organic Waste Management (CIDGRO) Cod. 09FC02-6021, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Briceño, G., Tortella, G., Rubilar, O., Palma, G., Diez, M.C. (2014). Advances in Chile for the Treatment of Pesticide Residues: Biobeds Technology. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_4

Download citation

Publish with us

Policies and ethics