Skip to main content

Biodegradation of α- and β-Hexachlorocyclohexane by Indigenous Actinobacteria

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

The organochlorine pesticide lindane (γ-HCH) and its non-insecticidal isomers α-, β-, and δ- continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. The present chapter reports the first results on the ability of Actinobacteria strains, isolated from a HCH-polluted site, to grow in a minimal medium containing α- or β-HCH (8.3 mg L−1) as sole source of carbon. Growth of cultures and HCHs degradation by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation by dry weight and GC with μECD detection, respectively. Streptomyces sp. M7 was able to metabolize the HCHs: removed up to 100 % of α-HCH and 55 % of β-HCH under optimal culture conditions: 30 °C, pH 7 and the isomers maxima concentration of 8.3 mg L−1. Also, Streptomyces sp. M7 showed greater overall growth in the presence of α-HCH than β-HCH, in concordance with the total or partial removal of the α-, β-, HCH isomers respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benimeli CS, Castro GR, Chaile AP et al (2006) Lindane removal induction by Streptomyces sp. M7. J Basic Microbiol 46:348–357

    Article  PubMed  CAS  Google Scholar 

  • Buser HR, Muller MD (1995) Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environ Sci Technol 29:664–672

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Pérez B, Ríos-Leal E, Rinderknecht-Seijas N et al (2012) Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. J Environ Manage 95:S306–S318

    Article  PubMed  Google Scholar 

  • Cuozzo SA, Abate CM, Rollan GC et al (2009) Specific dechlorinase activity on lindane degradation by Streptomyces sp. M7. World J Microbiol Biotechnol 25:1539–1546

    Article  CAS  Google Scholar 

  • De Paolis MR, Lippi D, Guerriero E et al (2013) Biodegradation of α-, β-, and γ-hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Appl Biochem Biotechnol 170:514–524

    Article  PubMed  CAS  Google Scholar 

  • Elcey CD, Kunhi AAM (2010) Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. J Agric Food Chem 58:1046–1054

    Article  PubMed  CAS  Google Scholar 

  • Engst R, Fritsche W, Knoll R et al (1979) Interim result of studies of microbial isomerization of gamma-hexachlorocyclohexane. Bull Environ Contam Toxicol 22:699–707

    Article  PubMed  CAS  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA et al (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeter Biodegr 64:434–441

    Article  CAS  Google Scholar 

  • Geueke B, Garg N, Ghosh S et al (2013) Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers. Environ Microbiol 15:1040–1049

    Article  PubMed  CAS  Google Scholar 

  • Jagnow G, Haider K, Ellwardt PC (1977) Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol 115:285–292

    Article  PubMed  CAS  Google Scholar 

  • Johri AK, Dua M, Tuteja D et al (1998) Degradation of alpha, beta, gamma and delta-hexachlorocyclohexane by Sphingomonas paucimobilis. Biotechnol Lett 20:885–887

    Article  CAS  Google Scholar 

  • Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Müller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Dadhwal M, Kumari K et al (2008) Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of hexachlorocyclohexane. Indian J Microbiol 48:3–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lal R, Pandey G, Sharma P et al (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manickam N, Reddy MK, Saini HS et al (2008) Isolation of hexachlorocyclohexane degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J Appl Microbiol 104:952–960

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol 23:380–390

    Article  CAS  Google Scholar 

  • Nagata Y, Endo R, Ito M et al (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752

    Article  PubMed  CAS  Google Scholar 

  • Pavlíková N, Bláhová L, Klán P et al (2012) Enantioselective effects of alpha-hexachlorocyclohexane (HCH) isomers on androgen receptor activity in vitro. Chemosphere 86:65–69

    Article  PubMed  Google Scholar 

  • Pesce SF, Wunderlin DA (2004) Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. Int Biodeter Biodegr 54:255–260

    Article  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2001) Colorimetric assay for lindane dechlorination by bacteria. J Microbiol Methods 47:181–188

    Article  PubMed  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H et al (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  PubMed  CAS  Google Scholar 

  • Raina V, Hauser A, Buser HR et al (2007) Hydroxylated metabolites of β- and δ-hexachlorocyclohexane: bacterial formation, stereochemical configuration, and occurrence in groundwater at a former production site. Environ Sci Technol 41:4292–4298

    Article  PubMed  CAS  Google Scholar 

  • Raina V, Rentsch D, Geiger T et al (2008) New metabolites in the degradation of α- and γ-hexachlorocyclohexane (HCH): pentachlorocyclohexenes are hydroxylated to cyclohexenols and cyclohexenediols by the haloalkane dehalogenase LinB from Sphingobium indicum B90A. J Agric Food Chem 56:6594–6603

    Article  PubMed  CAS  Google Scholar 

  • Senoo K, Wada H (1989) Isolation and identification of an aerobic γ-HCH decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87

    Article  CAS  Google Scholar 

  • Suar M, Hauser A, Poiger T, Buser HR, Muller MD et al (2005) Enantioselective transformation of alpha-hexachlorocyclohexane by the dehydrochlorinases LinA1 and LinA2 from the soil bacterium Sphingomonas paucimobilis B90A. Appl Environ Microbiol 71:8514–8518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tabata M, Endo R, Ito M et al (2011) The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids. Biosci Biotechnol Biochem 75:466–472

    Article  PubMed  CAS  Google Scholar 

  • Tabata M, Ohtsubo Y, Ohhata S et al (2013) Complete genome sequence of the γ-hexachlorocyclohexane-degrading bacterium Sphingomonas sp. Strain MM-1. GenomeA 1(3):e00247-13. doi:10.1128/genomeA.00247-13

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doesburg W, van Eekert MH, Middeldorp PJ et al (2005) Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54:87–95

    Article  PubMed  Google Scholar 

  • Vijgen J (2006) The legacy of lindane HCH isomer production: a global overview of residue management, formulation and disposal. International HCH and pesticide association. http://www.ihpa.info/library_access.php

  • Vijgen J, Abhilash PC, Li YF et al (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18:152–162

    Article  CAS  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  • Wu J, Hong Q, Han P et al (2007) A gene linB2 responsible for the conversion of β-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Appl Microbiol Biotechnol 73:1097–1105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by grants from CIUNT, ANPCYT, and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Cuozzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sineli, P., Benimeli, C.S., Amoroso, M.J., Cuozzo, S.A. (2014). Biodegradation of α- and β-Hexachlorocyclohexane by Indigenous Actinobacteria. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_18

Download citation

Publish with us

Policies and ethics