Skip to main content

Use of Actinobacteria Consortia to Improve Methoxychlor Bioremediation in Different Contaminated Matrices

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

Methoxychlor (MTX) is an organochlorine pesticide which has been banned in most countries; however, it is still being used in agricultural products and against mosquito. This pesticide has estrogenic activity and mimics endocrine hormone functions. Thus, it is important to analyze its behavior in different matrices.

Actinobacteria present the ability to degrade this pesticide, and its use in mixed cultures for bioremediation purposes can be advantageous.

Streptomyces spp. A3, A6, A12, A14, M7 and S. coelicolor A3 (2) were used as defined mixed cultures for MTX removal, after checking the absence of antagonistic effects among them. The consortium consisting of Streptomyces spp. A6, A12, A14, and M7 was selected. This defined mixed culture was able to grow in slurry bioreactors with or without stimulation, in the presence of MTX and also to remove it from stimulated and non-stimulated bioreactors. An increase about 10 % in MTX removal was observed in stimulated slurry bioreactors.

MTX removal in soil was 56.4 %. Maximum microbial growth and the absence of stationary growth phase were both observed in soil when the consortium was grown in the presence of MTX, while the opposite was observed in soil without MTX.

When comparing soil and slurries, similar removal percentages values can be observed but at a time almost three times higher in soil. Indeed, when analyzing ex situ bioremediation by slurries bioreactors, reduced processing times can be achieved, compared to in situ bioremediation. However, it is important to analyze the costs and benefits involved in using either bioremediation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez A, Yañez ML, Benimeli CS et al (2012) Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int Biodeter Biodegr 66:14–18

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6:389–394

    Article  CAS  Google Scholar 

  • Arias AH, Pereyra MT, Marcovecchio JE (2011) Multi-year monitoring of estuarine sediments as ultimate sink for DDT, HCH, and other organochlorinated pesticides in Argentina. Environ Monit Assess 172:17–32

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa MS, Craig ZR, Hernández-Ochoa I et al (2011) Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro. Toxicol Appl Pharmacol 253:161–169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Benimeli CS, Amoroso MJ, Chaile AP et al (2003) Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Biores Technol 89:133–138

    Article  CAS  Google Scholar 

  • Benimeli CS, Castro GR, Chaile AP et al (2006) Lindane removal induction by Streptomyces sp. M7. J Basic Microbiol 46:348–357

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Castro GR, Chaile AP et al (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeter Biodegr 59:148–155

    Article  CAS  Google Scholar 

  • Borrell A, Garcia-Solà A, Aguilar A et al (2010) Organochlorine residues in South American Sea Lions, Otaria flavescens (Shaw, 1800): bioaccumulation and time trends. Bull Environ Contam Toxicol 84:731–737

    Article  PubMed  CAS  Google Scholar 

  • Briceño G, Fuentes MS, Palma G et al (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeter Biodegr 73:1–7

    Article  Google Scholar 

  • Chaile AP, Romero N, Amoroso MJ et al (1999) Organochlorine pesticides in Salí River. Tucumán-Argentina. Rev Bol Ecol 6:203–209

    Google Scholar 

  • Crisp TM, Clegg ED, Cooper RL et al (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106:11–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dragun J (1998) Adsorption and mobility of organic chemicals. In: Dragun J (ed) The soil chemistry of hazardous materials. Amherst Scientific Publishers, Amherst, MA

    Google Scholar 

  • Edwards CA (1975) Factors that affect the persistence of pesticides in plants and soils. Pure Appl Chem 42:39–56

    Article  CAS  Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics and biotechnological applications. Microbiol Rev 58:641–685

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fogel S, Lancione RL, Sewall AE (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl Environ Microbiol 44:113–120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fort DJ, Guiney PD, Weeks JA et al (2004) Effect of methoxychlor on various life stages of Xenopus laevis. Toxicol Sci 81:454–466

    Article  PubMed  CAS  Google Scholar 

  • Fuentes MS (2012) Degradación aeróbica de plaguicidas organoclorados (clordano, metoxicloro y lindano) por actinomycetes autóctonos en sistemas líquidos, suelos y fangos. Ph.D. thesis. Universidad Nacional de Tucumán, Argentina

    Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA et al (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeter Biodegr 64:434–441

    Article  CAS  Google Scholar 

  • Fuentes MS, Sáez JM, Benimeli CS et al (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231

    Article  CAS  Google Scholar 

  • Fuentes MS, Alvarez A, Saez JM et al (2013a) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol. doi:10.1007/s13762-013-0314-0

    Google Scholar 

  • Fuentes MS, Briceño GE, Saez JM et al (2013b) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BioMed Res Int; doi:10.1155/2013/392573

  • Garcia-Rivero M, Peralta-Pérez MR (2008) Cometabolism in the biodegradation of hydrocarbons. Rev Mex Ing Biomed 7:1–12

    CAS  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1978) Sorption of hydrophobic pollutants on natural sediments. Environmental Research Laboratory, US Environmental Protection Agency, Athens, GA

    Google Scholar 

  • Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and papermill. Biodegradation 22:63–69

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Haruta S, Zong Jun C et al (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krishna KR, Philip L (2008) Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J Hazard Mater 160:559–567

    Article  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD et al (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Lee SM, Lee JW, Park KR et al (2006) Biodegradation of methoxychlor and its metabolites by the white rot fungus Stereum hirsutum related to the inactivation of estrogenic activity. J Environ Sci Health B 41:385–397

    Article  PubMed  CAS  Google Scholar 

  • Llados F, Sage G, Citra M et al (2002) Toxicological profile for DDT, DDE and DDD (Update), TP-35. Agency for toxic substances and disease registry. US Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  • Luo W, D’Angelo EM, Coyne MS (2008) Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere 70:364–373

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K et al (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Metcalf RL (1976) The future of insecticides. In: McKelevey JJ, Metcalf RL (eds) Organochlorine insecticides, survey, and prospects. Wiley and Sons, New York, pp 223–285

    Google Scholar 

  • Müller K, Magesan GN, Bolan NS (2007) A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agric Ecosyst Environ 120:93–116

    Article  Google Scholar 

  • Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 7:1–16

    Article  Google Scholar 

  • Siripattanakul S, Wirojanagud W, McEvoy J et al (2009) Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J Appl Microbiol 106:986–992

    Article  PubMed  CAS  Google Scholar 

  • Staub C, Hardy VB, Chapin RE et al (2002) The hidden effect of estrogenic/antiandrogenic methoxychlor on spermatogenesis. Toxicol Appl Pharmacol 180:129–135

    Article  PubMed  CAS  Google Scholar 

  • Stuchal LD, Kleinow KM, Stegeman JJ et al (2006) Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated, and 3-methylcholanthrene-treated channel catfish (Ictalurus punctatus): evidence for roles of cyp1 and cyp3a family isozymes. Drug Metab Dispos 34:932–938

    PubMed  CAS  Google Scholar 

  • Yang C, Li Y, Zhang K et al (2010) Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation 21:97–105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María S. Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fuentes, M.S., Alvarez, A., Saez, J.M., Benimeli, C.S., Amoroso, M.J. (2014). Use of Actinobacteria Consortia to Improve Methoxychlor Bioremediation in Different Contaminated Matrices. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_17

Download citation

Publish with us

Policies and ethics