Skip to main content

Feller Transition Functions

  • Chapter
  • First Online:
Invariant Probabilities of Transition Functions

Part of the book series: Probability and Its Applications ((PIA))

  • 933 Accesses

Abstract

As discussed at the beginning of Sect. 1.4, our goal in this chapter is to extend several results of [143] to Feller transition functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Y.A. Abramovich, C.D. Aliprantis, An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  2. Y.A. Abramovich, C.D. Aliprantis, Problems in Operator Theory. Graduate Studies in Mathematics, vol. 51 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  3. C.D. Aliprantis, O. Burkinshaw, Positive Operators (Academic, Orlando, 1985)

    MATH  Google Scholar 

  4. T. Alkurdi, S.C. Hille, O. van Gaans, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions. J. Math. Anal. Appl. 407, 480–494 (2013)

    MathSciNet  Google Scholar 

  5. M.F. Barnsley, Iterated function systems for lossless data compression, in Fractals in Multimedia, ed. by M.F. Barnsley, D. Saupe, E.R. Vrskay (Springer, New York, 2002), pp. 33–63

    Google Scholar 

  6. M.F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. A 399, 243–275 (1985)

    MATH  MathSciNet  Google Scholar 

  7. M.F. Barnsley, S.G. Demko, J.H. Elton, J.S. Geronimo, Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Ann. Inst. H. Poincaré, Probab. et Statist. 24, 367–394 (1988); 25, 589–590 (1989)

    Google Scholar 

  8. H. Bauer, Probability Theory (de Gruyter, Berlin/New York, 1996)

    MATH  Google Scholar 

  9. M. Beboutoff, Markoff chains with a compact state space. Rec. Math. (Mat. Sbornik) N. S. 10(52), 213–238 (1942)

    Google Scholar 

  10. M.B. Bekka, M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  11. L. Beznea, N. Boboc, Potential Theory and Right Processes (Kluwer, Dordrecht, 2004)

    MATH  Google Scholar 

  12. P. Billingsley, Probability and Measure, 2nd edn. (Wiley, New York/Chichester/Brisbane/ Toronto/Singapore, 1986)

    MATH  Google Scholar 

  13. P. Billingsley, Convergence of Probability Measures, 2nd edn. (Wiley, New York/Chichester/ Weinheim/Brisbane/Singapore/Toronto, 1999)

    MATH  Google Scholar 

  14. R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory (Academic, New York, 1968)

    MATH  Google Scholar 

  15. A.A. Borovkov, Ergodicity and Stability of Stochastic Processes (Wiley, Chichester, 1998)

    MATH  Google Scholar 

  16. J. Brezin, C.C. Moore, Flows on homogeneous spaces: a new look. Am. J. Math. 103, 571–613 (1981)

    MATH  MathSciNet  Google Scholar 

  17. P.M. Centore, E.R. Vrscay, Continuity of attractors and invariant measures for iterated function systems. Can. Math. Bull. 37, 315–329 (1994)

    MATH  MathSciNet  Google Scholar 

  18. K.L. Chung, J.B. Walsh, Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. (Springer, New York, 2005)

    MATH  Google Scholar 

  19. A.H. Clifford, D.D. Miller, Semigroups having zeroid elements. Am. J. Math. 70, 117–125 (1948)

    MATH  MathSciNet  Google Scholar 

  20. D.L. Cohn, Measure Theory (Birkhäuser, Boston, 1980)

    MATH  Google Scholar 

  21. J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96 (Springer, New York, 1985)

    Google Scholar 

  22. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory (Springer, Berlin/New York, 1982)

    Google Scholar 

  23. S.G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math. 47, 101–138 (1978)

    MATH  MathSciNet  Google Scholar 

  24. S.G. Dani, On invariant measures, minimal sets and a lemma of Margulis. Invent. Math. 51, 239–260 (1979)

    MATH  MathSciNet  Google Scholar 

  25. S.G. Dani, On orbits of unipotent flows on homogeneous spaces. Ergod. Theory Dyn. Syst. 4, 25–34 (1984)

    MATH  MathSciNet  Google Scholar 

  26. S.G. Dani, On orbits of unipotent flows on homogeneous spaces, II. Ergod. Theory Dyn. Syst. 6, 167–182 (1986)

    MATH  MathSciNet  Google Scholar 

  27. S.G. Dani, Flows on homogeneous spaces: a review, in Ergodic Theory of \(\mathbb{Z}^{d}\) -Actions, Warwick, 1993–1994, ed. by M. Pollicott, K. Schmidt. London Mathematical Society Lecture Note Series, vol. 228 (Cambridge University Press, Cambridge, 1996), pp. 63–112

    Google Scholar 

  28. S.G. Dani, J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J. 51, 185–194 (1984)

    MATH  MathSciNet  Google Scholar 

  29. J.-D. Deuschel, D.W. Stroock, Large Deviations. Pure and Applied Mathematics, vol. 137 (Academic, San Diego, 1989)

    Google Scholar 

  30. N. Dunford, J.T. Schwartz, Linear Operators, Part I: General Theory (Wiley, New York, 1988)

    MATH  Google Scholar 

  31. E.B. Dynkin, Markov Processes, vol. 2 (Springer, Berlin/Göttingen/Heidelberg, 1965)

    MATH  Google Scholar 

  32. A. Edalat, Power domains and iterated function systems. Inf. Comput. 124, 182–197 (1996)

    MATH  MathSciNet  Google Scholar 

  33. E.Yu. Emel’yanov, R. Zaharopol, Convergence of Lotz-Räbiger nets of operators on spaces of continuous functions. Rev. Roum. Math. Pures Appl. 55, 1–26 (2010)

    MATH  MathSciNet  Google Scholar 

  34. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer, New York, 2000)

    MATH  Google Scholar 

  35. S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence (Wiley, Hoboken, 2005)

    Google Scholar 

  36. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes (de Gruyter, Berlin/New York, 1994)

    MATH  Google Scholar 

  37. H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics, ed. by A. Beck. Lecture Notes in Mathematics, vol. 318 (Springer, Berlin/Heidelberg/New York, 1973), pp. 95–115

    Google Scholar 

  38. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, Princeton, 1981)

    MATH  Google Scholar 

  39. I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes, vol. 2 (Springer, Berlin/Heidelberg, 1975)

    MATH  Google Scholar 

  40. W.H. Gottschalk, G.A. Hedlund, Topological Dynamics. Colloquium Publications, vol. 36 (American Mathematical Society, Providence, 1955)

    Google Scholar 

  41. G. Hedlund, Dynamics of geodesic flows. Bull. Am. Math. Soc. 45, 241–260 (1939)

    MATH  MathSciNet  Google Scholar 

  42. O. Hernández-Lerma, J.B. Lasserre, Ergodic theorems and ergodic decompositions for Markov chains. Acta Appl. Math. 54, 99–119 (1988)

    Google Scholar 

  43. O. Hernández-Lerma, J.B. Lasserre, Markov Chains and Invariant Probabilities (Birkhäuser, Basel, 2003)

    MATH  Google Scholar 

  44. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, vol. 1, 2nd edn. (Springer, Berlin/Heidelberg, 1979)

    Google Scholar 

  45. H. Heyer, Probability Measures on Locally Compact Groups (Springer, Berlin/Heidelberg, 1977)

    MATH  Google Scholar 

  46. H. Heyer, Structural Aspects in the Theory of Probability: A Primer in Probabilities on Algebraic-Topological Structures (World Scientific, Singapore/River Edge/London, 2004)

    Google Scholar 

  47. T. Hida, Brownian Motion. Applications of Mathematics, vol. 11 (Springer, New York, 1980)

    Google Scholar 

  48. G. Högnäs, A. Mukherjea, Probability Measures on Semigroups: Convolution Products, Random Walks, and Random Matrices (Plenum Press, New York, 1995)

    MATH  Google Scholar 

  49. M. Iosifescu, S. Grigorescu, Dependence with Complete Connections and Its Applications (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  50. M. Iosifescu, R. Theodorescu, Random Processes and Learning (Springer, New York, 1969)

    MATH  Google Scholar 

  51. R. Kapica, T. Szarek, M. Ślȩczka, On a unique ergodicity of some Markov processes. Potential Anal. 36, 589–606 (2012)

    MATH  MathSciNet  Google Scholar 

  52. T. Komorowski, S. Peszat, T. Szarek, On ergodicity of some Markov processes. Ann. Probab. 38, 1401–1443 (2010)

    MATH  MathSciNet  Google Scholar 

  53. U. Krengel, Ergodic Theorems (de Gruyter, Berlin/New York, 1985)

    MATH  Google Scholar 

  54. N. Kryloff, N. Bogoliouboff, La théorie générale de la mesure dans son application à l’étude des systèmes de la mécanique nonlinéaires. Ann. Math. 38, 65–113 (1937)

    MathSciNet  Google Scholar 

  55. S. Lang, Algebra (Addison-Wesley, Reading/Menlo Park/London/Don Mills, 1971)

    Google Scholar 

  56. S. Lang, SL2 ( R ) (Springer, New York, 1985)

    MATH  Google Scholar 

  57. A. Lasota, M.C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (Springer, New York, 1994)

    MATH  Google Scholar 

  58. A. Lasota, J. Myjak, Semifractals. Bull. Pol. Acad. Sci. Math. 44, 5–21 (1996)

    MATH  MathSciNet  Google Scholar 

  59. A. Lasota, J. Myjak, Markov operators and fractals. Bull. Pol. Acad. Sci. Math. 45, 197–210 (1997)

    MATH  MathSciNet  Google Scholar 

  60. A. Lasota, J. Myjak, Semifractals on Polish spaces. Bull. Pol. Acad. Sci. Math. 46, 179–196 (1998)

    MATH  MathSciNet  Google Scholar 

  61. A. Lasota, J. Myjak, Fractals, semifractals and Markov operators. Int. J. Bifurc. Chaos 9, 307–325 (1999)

    MATH  MathSciNet  Google Scholar 

  62. A. Lasota, J. Myjak, Attractors of multifunctions. Bull. Pol. Acad. Sci. Math. 48, 319–334 (2000)

    MATH  MathSciNet  Google Scholar 

  63. A. Lasota, T. Szarek, Lower bound technique in the theory of a stochastical differential equation. J. Differ. Equ. 231, 513–533 (2006)

    MATH  MathSciNet  Google Scholar 

  64. A. Lasota, J.A. Yorke, Lower bound technique for Markov operators and iterated function systems. Random Comput. Dyn. 2, 41–77 (1994)

    MATH  MathSciNet  Google Scholar 

  65. T.M. Liggett, Interacting Particle Systems (Springer, New York, 1985)

    MATH  Google Scholar 

  66. T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer, Berlin, 1999)

    MATH  Google Scholar 

  67. M. Lin, Conservative Markov processes on a topological space. Isr. J. Math. 8, 165–186 (1970)

    MATH  Google Scholar 

  68. W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces I (North-Holland, Amsterdam, 1971)

    MATH  Google Scholar 

  69. P. Mandl, Analytical Treatment of One-Dimensional Markov Processes (Academia, Prague/Springer, Berlin/Heidelberg/New York, 1968)

    MATH  Google Scholar 

  70. R. Mañé, Ergodic Theory and Differentiable Dynamics (Springer, Berlin/Heidelberg, 1987)

    MATH  Google Scholar 

  71. M.B. Marcus, J. Rosen, Markov Processes, Gaussian Processes, and Local Times. Cambridge Studies in Advanced Mathematics, vol. 100 (Cambridge University Press, New York, 2006)

    Google Scholar 

  72. G.A. Margulis, On the action of unipotent groups in the space of lattices, in Lie Groups and Their Representations, Budapest, 1971, ed. by I.M. Gelfand (Akadémiai Kiado, Budapest/Wiley, New York/Toronto, 1975), pp. 365–370

    Google Scholar 

  73. G.A. Margulis, Lie groups and ergodic theory, in Algebra – Some Current Trends, Varna, 1986, ed. by L.L. Avramov, K.B. Tchakerian. Lecture Notes in Mathematics, vol. 1352 (Springer, Berlin/Heidelberg, 1988), pp. 130–146

    Google Scholar 

  74. G.A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups, ed. by K.E. Aubert, E. Bombieri, D. Goldfeld. Proceedings of the Conference in Honor of A. Selberg, Oslo, 1987 (Academic, San Diego/London, 1989), pp. 377–398

    Google Scholar 

  75. G.A. Margulis, Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory, in Proceedings of the International Congress of Mathematicians, Kyoto, 1990, vol. 1 (Mathematical Society of Japan/Springer, Kyoto, 1991), pp. 193–215

    Google Scholar 

  76. P.-A. Meyer, Probabilités et Potentiel (Hermann, Paris, 1966)

    MATH  Google Scholar 

  77. S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability (Springer, London, 1993)

    MATH  Google Scholar 

  78. D. Montgomery, L. Zippin, Topological Transformation Groups (Interscience, New York/London, 1955)

    MATH  Google Scholar 

  79. C.C. Moore, Ergodicity of flows on homogeneous spaces. Am. J. Math. 88, 154–178 (1966)

    MATH  Google Scholar 

  80. J. Myjak, T. Szarek, On Hausdorff dimension of invariant measures arising from non-contractive iterated function systems. Annali di Matematica 181, 223–237 (2002)

    MATH  MathSciNet  Google Scholar 

  81. J. Neveu, Bases Mathématiques du Calcul des Probabilités (Masson, Paris, 1964)

    MATH  Google Scholar 

  82. M. Nicol, N. Sidorov, D. Broomhead, On the fine structure of stationary measures in systems which contract-on-average. J. Theor. Probab. 15, 715–730 (2002)

    MATH  MathSciNet  Google Scholar 

  83. F. Norman, Markov Processes and Learning Models (Academic, New York/London, 1972)

    MATH  Google Scholar 

  84. O. Onicescu, G. Mihoc, Sur les chaines de variables statistiques. Bull. Sci. Math. 59, 174–192 (1935)

    Google Scholar 

  85. J.C. Oxtoby, Ergodic sets. Bull. Am. Math. Soc. 58, 116–136 (1952)

    MATH  MathSciNet  Google Scholar 

  86. R.R. Phelps, Lectures on Choquet’s Theorem, 2nd edn. Lecture Notes in Mathematics, vol. 1757 (Springer, Berlin/Heidelberg, 2001)

    Google Scholar 

  87. M.S. Raghunathan, Discrete Subgroups of Lie Groups (Springer, Berlin/Heidelberg, 1972)

    MATH  Google Scholar 

  88. M.M. Rao, Stochastic Processes: General Theory (Kluwer, Dordrecht, 1995)

    MATH  Google Scholar 

  89. M. Ratner, Ergodic theory in hyperbolic space. Contemp. Math. 26, 309–334 (1984)

    MATH  MathSciNet  Google Scholar 

  90. M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups. Invent. Math. 101, 449–482 (1990)

    MATH  MathSciNet  Google Scholar 

  91. M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups. Acta Math. 165, 229–309 (1990)

    MATH  MathSciNet  Google Scholar 

  92. M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63, 235–280 (1991)

    MATH  MathSciNet  Google Scholar 

  93. M. Ratner, Distribution rigidity for unipotent actions on homogeneous spaces. Bull. Am. Math. Soc. 24, 321–325 (1991)

    MATH  MathSciNet  Google Scholar 

  94. M. Ratner, On Raghunathan’s measure conjecture. Ann. Math. 134, 545–607 (1991)

    MATH  MathSciNet  Google Scholar 

  95. M. Ratner, Raghunathan’s conjectures for \(\mathrm{SL}(2, \mathbb{R})\). Isr. J. Math. 80, 1–31 (1992)

    MATH  MathSciNet  Google Scholar 

  96. H. Reiter, Classical Harmonic Analysis and Locally Compact Groups (Oxford University Press, Oxford, 1968)

    MATH  Google Scholar 

  97. D. Revuz, Markov Chains (North-Holland, Amsterdam/American Elsevier, New York, 1975)

    MATH  Google Scholar 

  98. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 2nd edn. (Springer, Berlin/Heidelberg, 1994)

    MATH  Google Scholar 

  99. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Boca Raton/Ann Arbor/London/Tokyo, 1995)

    MATH  Google Scholar 

  100. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, Volume 1: Foundations, 2nd edn. (Wiley, Chichester, 1994)

    Google Scholar 

  101. V.A. Rohlin, On the fundamental ideas of measure theory. (Russian) Mat. Sbornik N. S. 25(67), 107–150 (1949) (English Translation in: Am. Math. Soc. Transl. 71, 1–55 (1952))

    Google Scholar 

  102. M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior (Springer, Berlin/Heidelberg, 1971)

    Google Scholar 

  103. H.L. Royden, Real Analysis, 3rd edn. (Macmillan, New York, 1988)

    MATH  Google Scholar 

  104. D.J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces (Clarendon, Oxford, 1990)

    MATH  Google Scholar 

  105. H.H. Schaefer, Banach Lattices and Positive Operators (Springer, Berlin/New York, 1974)

    MATH  Google Scholar 

  106. N.A. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces. Math. Ann. 289, 315–334 (1991)

    MATH  MathSciNet  Google Scholar 

  107. Ya.G. Sinai, Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972)

    Google Scholar 

  108. A.V. Skorokhod, Topologically recurrent Markov chains: ergodic properties. Theor. Probab. Appl. 31, 563–571 (1986)

    MathSciNet  Google Scholar 

  109. A.N. Starkov, The ergodic behavior of flows on homogeneous spaces. Sov. Math. Dokl. 28, 675–676 (1983)

    MATH  Google Scholar 

  110. A.N. Starkov, Nonergodic homogeneous flows. Sov. Math. Dokl. 33, 729–731 (1986)

    MATH  Google Scholar 

  111. A.N. Starkov, Ergodic decomposition of flows on homogeneous spaces of finite volume. Math. USSR Sb. 68, 483–502 (1991)

    MathSciNet  Google Scholar 

  112. A.N. Starkov, Minimal sets of homogeneous flows. Ergod. Theory Dyn. Syst. 15, 361–377 (1995)

    MATH  MathSciNet  Google Scholar 

  113. A.N. Starkov, Dynamical Systems on Homogeneous Spaces (AMS, Providence, 2000)

    Google Scholar 

  114. Ö. Stenflo, Ergodic theorems for time-dependent random iterations of functions, in Fractals and Beyond, Valletta, 1998 (World Scientific Publishing, River Edge, 1998), pp. 129–136

    Google Scholar 

  115. Ö. Stenflo, Markov chains in random environments and random iterated function systems. Trans. Am. Math. Soc. 353, 3547–3562 (2001)

    MATH  MathSciNet  Google Scholar 

  116. Ö. Stenflo, A note on a theorem of Karlin. Stat. Probab. Lett. 54, 183–187 (2001)

    MATH  MathSciNet  Google Scholar 

  117. Ö. Stenflo, Uniqueness of invariant measures for place-dependent random iterations of functions, in Fractals in Multimedia, ed. by M.F. Barnsley, D. Saupe, E.R. Vrscay (Springer, New York, 2002), pp. 13–32

    Google Scholar 

  118. Ö. Stenflo, Uniqueness in g-measures. Nonlinearity 16, 403–410 (2003)

    MATH  MathSciNet  Google Scholar 

  119. D.W. Stroock, Probability Theory, An Analytic View (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  120. T. Szarek, Invariant measures for Markov operators with application to function systems. Studia Math. 154, 207–222 (2003)

    MATH  MathSciNet  Google Scholar 

  121. T. Szarek, The uniqueness of invariant measures for Markov operators. Studia Math. 189, 225–233 (2008)

    MATH  MathSciNet  Google Scholar 

  122. T. Szarek, D.T.H. Worm, Ergodic measures of Markov semigroups with the e-property. Ergodic Theory Dyn. Syst. 32, 1117–1135 (2012)

    MATH  MathSciNet  Google Scholar 

  123. T. Szarek, M. Ślȩczka, M. Urbański, On stability of velocity vectors for some passive tracer models. Bull. Lond. Math. Soc. 42, 923–936 (2010)

    MATH  MathSciNet  Google Scholar 

  124. K. Taira, Semigroups, Boundary Value Problems and Markov Processes (Springer, Berlin/Heidelberg, 2004)

    MATH  Google Scholar 

  125. E.R. Vrscay, From fractal image compression to fractal-based methods in mathematics, in Fractals in Multimedia, ed. by M.F. Barnsley, D. Saupe, E.R. Vrscay (Springer, New York, 2002), pp. 65–106

    Google Scholar 

  126. P. Walters, An Introduction to Ergodic Theory (Springer, New York, 1982)

    MATH  Google Scholar 

  127. S. Warner, Modern Algebra, vol. 1 (Prentice Hall, Englewood Cliffs, 1965)

    MATH  Google Scholar 

  128. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Scott, Foresman&Co., Glenview, 1971)

    Google Scholar 

  129. A. Weil, L’Intégration dans les Groupes Topologiques et ses Applications, 2nd edn. (Hermann, Paris, 1951)

    Google Scholar 

  130. D.T.H. Worm, Semigroups on Spaces of Measures. Ph.D. Thesis, Thomas Stieltjes Institute for Mathematics, Leiden (2010)

    Google Scholar 

  131. D.T.H. Worm, S.C. Hille, Ergodic decompositions associated to regular Markov operators on Polish spaces. Ergod. Theory Dyn. Syst. 31, 571–597 (2011)

    MATH  MathSciNet  Google Scholar 

  132. D.T.H. Worm, S.C. Hille, An ergodic decomposition defined by regular jointly measurable Markov semigroups on Polish spaces. Acta Appl. Math. 116, 27–53 (2011)

    MATH  MathSciNet  Google Scholar 

  133. D.T.H. Worm, S.C. Hille, Equicontinuous families of Markov operators on complete separable metric spaces with applications to ergodic decompositions and existence, uniqueness, and stability of invariant measures (preprint)

    Google Scholar 

  134. D. Worm, R. Zaharopol, On an ergodic decomposition defined in terms of certain generators: the case when the generator is defined on the entire space C b (X), to appear in Rev. Roum. Math. Pures Appl. 1, 2015

    Google Scholar 

  135. K. Yosida, Markoff processes with a stable distribution. Proc. Imp. Acad. Tokyo 16, 43–48 (1940)

    MathSciNet  Google Scholar 

  136. K. Yosida, Simple Markoff process with a locally compact phase space. Math. Jpn. 1, 99–103 (1948)

    MATH  MathSciNet  Google Scholar 

  137. K. Yosida, Lectures on Differential and Integral Equations (Interscience, New York, 1960)

    MATH  Google Scholar 

  138. K. Yosida, Functional Analysis, 3rd edn. (Springer, New York, 1971)

    MATH  Google Scholar 

  139. A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin/Heidelberg, 1997)

    MATH  Google Scholar 

  140. R. Zaharopol, Iterated function systems generated by strict contractions and place-dependent probabilities. Bull. Pol. Acad. Sci. Math. 48, 429–438 (2000)

    MATH  MathSciNet  Google Scholar 

  141. R. Zaharopol, Fortet-Mourier norms associated with some iterated function systems. Stat. Probab. Lett. 50, 149–154 (2000)

    MATH  MathSciNet  Google Scholar 

  142. R. Zaharopol, Attractive probability measures and their supports. Rev. Roum. Math. Pures Appl. 49, 397–418 (2004)

    MATH  MathSciNet  Google Scholar 

  143. R. Zaharopol, Invariant Probabilities of Markov-Feller Operators and Their Supports (Birkhäuser, Basel/Boston/Berlin, 2005)

    MATH  Google Scholar 

  144. R. Zaharopol, Invariant probabilities of convolution operators. Rev. Roum. Math. Pures Appl. 50, 387–405 (2005)

    MATH  MathSciNet  Google Scholar 

  145. R. Zaharopol, Equicontinuity and the existence of attractive probability measures for some iterated function systems. Rev. Roum. Math. Pures Appl. 52, 259–286 (2007); Erratum in Vol. 52(6) (2007)

    Google Scholar 

  146. R. Zaharopol, An ergodic decomposition defined by transition probabilities. Acta Appl. Math. 104, 47–81 (2008)

    MATH  MathSciNet  Google Scholar 

  147. R. Zaharopol, Vector integrals and a pointwise mean ergodic theorem for transition functions. Rev. Roum. Math. Pures Appl. 53, 63–78 (2008)

    MATH  MathSciNet  Google Scholar 

  148. R. Zaharopol, Transition probabilities, transition functions, and an ergodic decomposition. Bull. Transilv. Univ. Braş. 2(51), 149–170 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaharopol, R. (2014). Feller Transition Functions. In: Invariant Probabilities of Transition Functions. Probability and Its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-05723-1_7

Download citation

Publish with us

Policies and ethics