Skip to main content

Preliminaries on Transition Functions and Their Invariant Probabilities

  • Chapter
  • First Online:
Invariant Probabilities of Transition Functions

Part of the book series: Probability and Its Applications ((PIA))

  • 917 Accesses

Abstract

Our goal in this chapter is to introduce the transition functions and to discuss various related notions and known basic results that will be used throughout the book. Also in this chapter, we discuss several examples of transition functions which have a didactic purpose in the sense that we present these examples only to use them to illustrate the results of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. H. Bauer, Probability Theory (de Gruyter, Berlin/New York, 1996)

    MATH  Google Scholar 

  2. M.B. Bekka, M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  3. L. Beznea, N. Boboc, Potential Theory and Right Processes (Kluwer, Dordrecht, 2004)

    MATH  Google Scholar 

  4. R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory (Academic, New York, 1968)

    MATH  Google Scholar 

  5. A.A. Borovkov, Ergodicity and Stability of Stochastic Processes (Wiley, Chichester, 1998)

    MATH  Google Scholar 

  6. K.L. Chung, J.B. Walsh, Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. (Springer, New York, 2005)

    MATH  Google Scholar 

  7. D.L. Cohn, Measure Theory (Birkhäuser, Boston, 1980)

    MATH  Google Scholar 

  8. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory (Springer, Berlin/New York, 1982)

    Google Scholar 

  9. S.G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math. 47, 101–138 (1978)

    MATH  MathSciNet  Google Scholar 

  10. J.-D. Deuschel, D.W. Stroock, Large Deviations. Pure and Applied Mathematics, vol. 137 (Academic, San Diego, 1989)

    Google Scholar 

  11. N. Dunford, J.T. Schwartz, Linear Operators, Part I: General Theory (Wiley, New York, 1988)

    MATH  Google Scholar 

  12. E.B. Dynkin, Markov Processes, vol. 2 (Springer, Berlin/Göttingen/Heidelberg, 1965)

    MATH  Google Scholar 

  13. S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence (Wiley, Hoboken, 2005)

    Google Scholar 

  14. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes (de Gruyter, Berlin/New York, 1994)

    MATH  Google Scholar 

  15. H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics, ed. by A. Beck. Lecture Notes in Mathematics, vol. 318 (Springer, Berlin/Heidelberg/New York, 1973), pp. 95–115

    Google Scholar 

  16. I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes, vol. 2 (Springer, Berlin/Heidelberg, 1975)

    MATH  Google Scholar 

  17. G. Hedlund, Dynamics of geodesic flows. Bull. Am. Math. Soc. 45, 241–260 (1939)

    MATH  MathSciNet  Google Scholar 

  18. T. Hida, Brownian Motion. Applications of Mathematics, vol. 11 (Springer, New York, 1980)

    Google Scholar 

  19. G. Högnäs, A. Mukherjea, Probability Measures on Semigroups: Convolution Products, Random Walks, and Random Matrices (Plenum Press, New York, 1995)

    MATH  Google Scholar 

  20. M. Iosifescu, S. Grigorescu, Dependence with Complete Connections and Its Applications (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  21. M. Iosifescu, R. Theodorescu, Random Processes and Learning (Springer, New York, 1969)

    MATH  Google Scholar 

  22. R. Kapica, T. Szarek, M. Ślȩczka, On a unique ergodicity of some Markov processes. Potential Anal. 36, 589–606 (2012)

    MATH  MathSciNet  Google Scholar 

  23. T. Komorowski, S. Peszat, T. Szarek, On ergodicity of some Markov processes. Ann. Probab. 38, 1401–1443 (2010)

    MATH  MathSciNet  Google Scholar 

  24. U. Krengel, Ergodic Theorems (de Gruyter, Berlin/New York, 1985)

    MATH  Google Scholar 

  25. N. Kryloff, N. Bogoliouboff, La théorie générale de la mesure dans son application à l’étude des systèmes de la mécanique nonlinéaires. Ann. Math. 38, 65–113 (1937)

    MathSciNet  Google Scholar 

  26. S. Lang, Algebra (Addison-Wesley, Reading/Menlo Park/London/Don Mills, 1971)

    Google Scholar 

  27. S. Lang, SL2 ( R ) (Springer, New York, 1985)

    MATH  Google Scholar 

  28. A. Lasota, M.C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (Springer, New York, 1994)

    MATH  Google Scholar 

  29. A. Lasota, J. Myjak, Semifractals. Bull. Pol. Acad. Sci. Math. 44, 5–21 (1996)

    MATH  MathSciNet  Google Scholar 

  30. A. Lasota, J. Myjak, Markov operators and fractals. Bull. Pol. Acad. Sci. Math. 45, 197–210 (1997)

    MATH  MathSciNet  Google Scholar 

  31. A. Lasota, J. Myjak, Semifractals on Polish spaces. Bull. Pol. Acad. Sci. Math. 46, 179–196 (1998)

    MATH  MathSciNet  Google Scholar 

  32. A. Lasota, J. Myjak, Fractals, semifractals and Markov operators. Int. J. Bifurc. Chaos 9, 307–325 (1999)

    MATH  MathSciNet  Google Scholar 

  33. A. Lasota, J. Myjak, Attractors of multifunctions. Bull. Pol. Acad. Sci. Math. 48, 319–334 (2000)

    MATH  MathSciNet  Google Scholar 

  34. A. Lasota, T. Szarek, Lower bound technique in the theory of a stochastical differential equation. J. Differ. Equ. 231, 513–533 (2006)

    MATH  MathSciNet  Google Scholar 

  35. A. Lasota, J.A. Yorke, Lower bound technique for Markov operators and iterated function systems. Random Comput. Dyn. 2, 41–77 (1994)

    MATH  MathSciNet  Google Scholar 

  36. T.M. Liggett, Interacting Particle Systems (Springer, New York, 1985)

    MATH  Google Scholar 

  37. T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer, Berlin, 1999)

    MATH  Google Scholar 

  38. M. Lin, Conservative Markov processes on a topological space. Isr. J. Math. 8, 165–186 (1970)

    MATH  Google Scholar 

  39. W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces I (North-Holland, Amsterdam, 1971)

    MATH  Google Scholar 

  40. P. Mandl, Analytical Treatment of One-Dimensional Markov Processes (Academia, Prague/Springer, Berlin/Heidelberg/New York, 1968)

    MATH  Google Scholar 

  41. R. Mañé, Ergodic Theory and Differentiable Dynamics (Springer, Berlin/Heidelberg, 1987)

    MATH  Google Scholar 

  42. M.B. Marcus, J. Rosen, Markov Processes, Gaussian Processes, and Local Times. Cambridge Studies in Advanced Mathematics, vol. 100 (Cambridge University Press, New York, 2006)

    Google Scholar 

  43. G.A. Margulis, On the action of unipotent groups in the space of lattices, in Lie Groups and Their Representations, Budapest, 1971, ed. by I.M. Gelfand (Akadémiai Kiado, Budapest/Wiley, New York/Toronto, 1975), pp. 365–370

    Google Scholar 

  44. G.A. Margulis, Lie groups and ergodic theory, in Algebra – Some Current Trends, Varna, 1986, ed. by L.L. Avramov, K.B. Tchakerian. Lecture Notes in Mathematics, vol. 1352 (Springer, Berlin/Heidelberg, 1988), pp. 130–146

    Google Scholar 

  45. G.A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups, ed. by K.E. Aubert, E. Bombieri, D. Goldfeld. Proceedings of the Conference in Honor of A. Selberg, Oslo, 1987 (Academic, San Diego/London, 1989), pp. 377–398

    Google Scholar 

  46. G.A. Margulis, Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory, in Proceedings of the International Congress of Mathematicians, Kyoto, 1990, vol. 1 (Mathematical Society of Japan/Springer, Kyoto, 1991), pp. 193–215

    Google Scholar 

  47. P.-A. Meyer, Probabilités et Potentiel (Hermann, Paris, 1966)

    MATH  Google Scholar 

  48. S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability (Springer, London, 1993)

    MATH  Google Scholar 

  49. D. Montgomery, L. Zippin, Topological Transformation Groups (Interscience, New York/London, 1955)

    MATH  Google Scholar 

  50. C.C. Moore, Ergodicity of flows on homogeneous spaces. Am. J. Math. 88, 154–178 (1966)

    MATH  Google Scholar 

  51. J. Myjak, T. Szarek, On Hausdorff dimension of invariant measures arising from non-contractive iterated function systems. Annali di Matematica 181, 223–237 (2002)

    MATH  MathSciNet  Google Scholar 

  52. J. Neveu, Bases Mathématiques du Calcul des Probabilités (Masson, Paris, 1964)

    MATH  Google Scholar 

  53. M. Nicol, N. Sidorov, D. Broomhead, On the fine structure of stationary measures in systems which contract-on-average. J. Theor. Probab. 15, 715–730 (2002)

    MATH  MathSciNet  Google Scholar 

  54. F. Norman, Markov Processes and Learning Models (Academic, New York/London, 1972)

    MATH  Google Scholar 

  55. O. Onicescu, G. Mihoc, Sur les chaines de variables statistiques. Bull. Sci. Math. 59, 174–192 (1935)

    Google Scholar 

  56. J.C. Oxtoby, Ergodic sets. Bull. Am. Math. Soc. 58, 116–136 (1952)

    MATH  MathSciNet  Google Scholar 

  57. R.R. Phelps, Lectures on Choquet’s Theorem, 2nd edn. Lecture Notes in Mathematics, vol. 1757 (Springer, Berlin/Heidelberg, 2001)

    Google Scholar 

  58. M.S. Raghunathan, Discrete Subgroups of Lie Groups (Springer, Berlin/Heidelberg, 1972)

    MATH  Google Scholar 

  59. M.M. Rao, Stochastic Processes: General Theory (Kluwer, Dordrecht, 1995)

    MATH  Google Scholar 

  60. M. Ratner, Ergodic theory in hyperbolic space. Contemp. Math. 26, 309–334 (1984)

    MATH  MathSciNet  Google Scholar 

  61. M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups. Invent. Math. 101, 449–482 (1990)

    MATH  MathSciNet  Google Scholar 

  62. M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups. Acta Math. 165, 229–309 (1990)

    MATH  MathSciNet  Google Scholar 

  63. M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63, 235–280 (1991)

    MATH  MathSciNet  Google Scholar 

  64. M. Ratner, Distribution rigidity for unipotent actions on homogeneous spaces. Bull. Am. Math. Soc. 24, 321–325 (1991)

    MATH  MathSciNet  Google Scholar 

  65. M. Ratner, On Raghunathan’s measure conjecture. Ann. Math. 134, 545–607 (1991)

    MATH  MathSciNet  Google Scholar 

  66. M. Ratner, Raghunathan’s conjectures for \(\mathrm{SL}(2, \mathbb{R})\). Isr. J. Math. 80, 1–31 (1992)

    MATH  MathSciNet  Google Scholar 

  67. H. Reiter, Classical Harmonic Analysis and Locally Compact Groups (Oxford University Press, Oxford, 1968)

    MATH  Google Scholar 

  68. D. Revuz, Markov Chains (North-Holland, Amsterdam/American Elsevier, New York, 1975)

    MATH  Google Scholar 

  69. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 2nd edn. (Springer, Berlin/Heidelberg, 1994)

    MATH  Google Scholar 

  70. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Boca Raton/Ann Arbor/London/Tokyo, 1995)

    MATH  Google Scholar 

  71. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, Volume 1: Foundations, 2nd edn. (Wiley, Chichester, 1994)

    Google Scholar 

  72. V.A. Rohlin, On the fundamental ideas of measure theory. (Russian) Mat. Sbornik N. S. 25(67), 107–150 (1949) (English Translation in: Am. Math. Soc. Transl. 71, 1–55 (1952))

    Google Scholar 

  73. M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior (Springer, Berlin/Heidelberg, 1971)

    Google Scholar 

  74. H.L. Royden, Real Analysis, 3rd edn. (Macmillan, New York, 1988)

    MATH  Google Scholar 

  75. D.J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces (Clarendon, Oxford, 1990)

    MATH  Google Scholar 

  76. H.H. Schaefer, Banach Lattices and Positive Operators (Springer, Berlin/New York, 1974)

    MATH  Google Scholar 

  77. N.A. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces. Math. Ann. 289, 315–334 (1991)

    MATH  MathSciNet  Google Scholar 

  78. Ya.G. Sinai, Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972)

    Google Scholar 

  79. A.V. Skorokhod, Topologically recurrent Markov chains: ergodic properties. Theor. Probab. Appl. 31, 563–571 (1986)

    MathSciNet  Google Scholar 

  80. A.N. Starkov, The ergodic behavior of flows on homogeneous spaces. Sov. Math. Dokl. 28, 675–676 (1983)

    MATH  Google Scholar 

  81. A.N. Starkov, Nonergodic homogeneous flows. Sov. Math. Dokl. 33, 729–731 (1986)

    MATH  Google Scholar 

  82. A.N. Starkov, Ergodic decomposition of flows on homogeneous spaces of finite volume. Math. USSR Sb. 68, 483–502 (1991)

    MathSciNet  Google Scholar 

  83. A.N. Starkov, Minimal sets of homogeneous flows. Ergod. Theory Dyn. Syst. 15, 361–377 (1995)

    MATH  MathSciNet  Google Scholar 

  84. A.N. Starkov, Dynamical Systems on Homogeneous Spaces (AMS, Providence, 2000)

    Google Scholar 

  85. Ö. Stenflo, Ergodic theorems for time-dependent random iterations of functions, in Fractals and Beyond, Valletta, 1998 (World Scientific Publishing, River Edge, 1998), pp. 129–136

    Google Scholar 

  86. Ö. Stenflo, Markov chains in random environments and random iterated function systems. Trans. Am. Math. Soc. 353, 3547–3562 (2001)

    MATH  MathSciNet  Google Scholar 

  87. Ö. Stenflo, A note on a theorem of Karlin. Stat. Probab. Lett. 54, 183–187 (2001)

    MATH  MathSciNet  Google Scholar 

  88. Ö. Stenflo, Uniqueness of invariant measures for place-dependent random iterations of functions, in Fractals in Multimedia, ed. by M.F. Barnsley, D. Saupe, E.R. Vrscay (Springer, New York, 2002), pp. 13–32

    Google Scholar 

  89. Ö. Stenflo, Uniqueness in g-measures. Nonlinearity 16, 403–410 (2003)

    MATH  MathSciNet  Google Scholar 

  90. D.W. Stroock, Probability Theory, An Analytic View (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  91. T. Szarek, Invariant measures for Markov operators with application to function systems. Studia Math. 154, 207–222 (2003)

    MATH  MathSciNet  Google Scholar 

  92. T. Szarek, The uniqueness of invariant measures for Markov operators. Studia Math. 189, 225–233 (2008)

    MATH  MathSciNet  Google Scholar 

  93. T. Szarek, D.T.H. Worm, Ergodic measures of Markov semigroups with the e-property. Ergodic Theory Dyn. Syst. 32, 1117–1135 (2012)

    MATH  MathSciNet  Google Scholar 

  94. T. Szarek, M. Ślȩczka, M. Urbański, On stability of velocity vectors for some passive tracer models. Bull. Lond. Math. Soc. 42, 923–936 (2010)

    MATH  MathSciNet  Google Scholar 

  95. K. Taira, Semigroups, Boundary Value Problems and Markov Processes (Springer, Berlin/Heidelberg, 2004)

    MATH  Google Scholar 

  96. E.R. Vrscay, From fractal image compression to fractal-based methods in mathematics, in Fractals in Multimedia, ed. by M.F. Barnsley, D. Saupe, E.R. Vrscay (Springer, New York, 2002), pp. 65–106

    Google Scholar 

  97. P. Walters, An Introduction to Ergodic Theory (Springer, New York, 1982)

    MATH  Google Scholar 

  98. S. Warner, Modern Algebra, vol. 1 (Prentice Hall, Englewood Cliffs, 1965)

    MATH  Google Scholar 

  99. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Scott, Foresman&Co., Glenview, 1971)

    Google Scholar 

  100. A. Weil, L’Intégration dans les Groupes Topologiques et ses Applications, 2nd edn. (Hermann, Paris, 1951)

    Google Scholar 

  101. D.T.H. Worm, Semigroups on Spaces of Measures. Ph.D. Thesis, Thomas Stieltjes Institute for Mathematics, Leiden (2010)

    Google Scholar 

  102. D.T.H. Worm, S.C. Hille, Ergodic decompositions associated to regular Markov operators on Polish spaces. Ergod. Theory Dyn. Syst. 31, 571–597 (2011)

    MATH  MathSciNet  Google Scholar 

  103. D.T.H. Worm, S.C. Hille, An ergodic decomposition defined by regular jointly measurable Markov semigroups on Polish spaces. Acta Appl. Math. 116, 27–53 (2011)

    MATH  MathSciNet  Google Scholar 

  104. D.T.H. Worm, S.C. Hille, Equicontinuous families of Markov operators on complete separable metric spaces with applications to ergodic decompositions and existence, uniqueness, and stability of invariant measures (preprint)

    Google Scholar 

  105. D. Worm, R. Zaharopol, On an ergodic decomposition defined in terms of certain generators: the case when the generator is defined on the entire space C b (X), to appear in Rev. Roum. Math. Pures Appl. 1, 2015

    Google Scholar 

  106. K. Yosida, Markoff processes with a stable distribution. Proc. Imp. Acad. Tokyo 16, 43–48 (1940)

    MathSciNet  Google Scholar 

  107. K. Yosida, Simple Markoff process with a locally compact phase space. Math. Jpn. 1, 99–103 (1948)

    MATH  MathSciNet  Google Scholar 

  108. K. Yosida, Lectures on Differential and Integral Equations (Interscience, New York, 1960)

    MATH  Google Scholar 

  109. K. Yosida, Functional Analysis, 3rd edn. (Springer, New York, 1971)

    MATH  Google Scholar 

  110. A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin/Heidelberg, 1997)

    MATH  Google Scholar 

  111. R. Zaharopol, Iterated function systems generated by strict contractions and place-dependent probabilities. Bull. Pol. Acad. Sci. Math. 48, 429–438 (2000)

    MATH  MathSciNet  Google Scholar 

  112. R. Zaharopol, Fortet-Mourier norms associated with some iterated function systems. Stat. Probab. Lett. 50, 149–154 (2000)

    MATH  MathSciNet  Google Scholar 

  113. R. Zaharopol, Attractive probability measures and their supports. Rev. Roum. Math. Pures Appl. 49, 397–418 (2004)

    MATH  MathSciNet  Google Scholar 

  114. R. Zaharopol, Invariant Probabilities of Markov-Feller Operators and Their Supports (Birkhäuser, Basel/Boston/Berlin, 2005)

    MATH  Google Scholar 

  115. R. Zaharopol, Invariant probabilities of convolution operators. Rev. Roum. Math. Pures Appl. 50, 387–405 (2005)

    MATH  MathSciNet  Google Scholar 

  116. R. Zaharopol, Equicontinuity and the existence of attractive probability measures for some iterated function systems. Rev. Roum. Math. Pures Appl. 52, 259–286 (2007); Erratum in Vol. 52(6) (2007)

    Google Scholar 

  117. R. Zaharopol, An ergodic decomposition defined by transition probabilities. Acta Appl. Math. 104, 47–81 (2008)

    MATH  MathSciNet  Google Scholar 

  118. R. Zaharopol, Vector integrals and a pointwise mean ergodic theorem for transition functions. Rev. Roum. Math. Pures Appl. 53, 63–78 (2008)

    MATH  MathSciNet  Google Scholar 

  119. R. Zaharopol, Transition probabilities, transition functions, and an ergodic decomposition. Bull. Transilv. Univ. Braş. 2(51), 149–170 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaharopol, R. (2014). Preliminaries on Transition Functions and Their Invariant Probabilities. In: Invariant Probabilities of Transition Functions. Probability and Its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-05723-1_2

Download citation

Publish with us

Policies and ethics