Evaluation of Heteroepitaxially Grown Semipolar {20-21} GaN on Patterned Sapphire Substrate

  • Yasuhiro Hashimoto
  • Masakazu Koyama
  • Takashi Inagaki
  • Keisuke Yamane
  • Narihito Okada
  • Kazuyuki TadatomoEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 306)


Semipolar {20-21} GaN layers were grown on {22-43} patterned sapphire substrates by metal–organic vapor phase epitaxy using a two-step growth method. We succeeded in suppressing −c-plane growth at growth temperatures of 1,000 and 900 °C for the first and second steps, respectively; the resulting structure exhibited a large reduction in the number of stacking faults upon optimizing the growth conditions. Photoluminescence measurements showed an increase in the near-band-edge emission and a decrease in deep-center emission when the two-step growth was performed at higher V/III ratio.


MOVPE GaN PSS {20-21} Stacking fault PL 



This work was partly supported by the “Regional Innovation Cluster Program” (Global Type), and a Grant-in-Aid for Young Scientists B # 24,760,012 funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan


  1. 1.
    Funato M, Ueda M, Kawakami Y, Nakamura Y, Kosugi T, Takahashi M, Mukai T (2006) Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates. Jpn J Appl Phys 45:L659CrossRefGoogle Scholar
  2. 2.
    Enya Y, Yoshizumi Y, Kyono T, Akita K, Ueno M, Adachi M, Sumitomo T, Tokuyama S, Ikegami T, Katayama K, Nakamura T (2009) 531 nm green lasing of InGaN based laser diodes on semi-polar {20-21} free-standing GaN substrates. Appl Phys Express 2:082101CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Tanaka S, Pan CC, Fujito K, Feezell D, Speck JS, DenBaars SP, Nakamura S (2011) High-power blue-violet semipolar (20-2-1) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2. Appl Phys Express 4:082104CrossRefGoogle Scholar
  4. 4.
    Sasaki T, Zembutsu S (1987) Substrateorientation dependence of GaN single‐crystal films grown by metalorganic vapor‐phase epitaxy. J Appl Phys 61:2533CrossRefGoogle Scholar
  5. 5.
    Waltereit P, Brandt O, Trampert A, Grahn HT, Menniger J, Ramsteiner M., Reiche M, Ploog KH (2000) Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406:865 (London)CrossRefGoogle Scholar
  6. 6.
    Armitage R, Hirayama H (2008) M-plane GaN grown on m-sapphire by metalorganic vapor phase epitaxy. Appl Phys Lett 92:092121CrossRefGoogle Scholar
  7. 7.
    Baker TJ, Haskell BA, Wu F, Speck JS, Nakamura S (2006) Characterization of planar semipolar gallium nitride films on sapphire substrates. Jpn J Appl Phys 45:L154CrossRefGoogle Scholar
  8. 8.
    Baker TJ, Haskell BA, Wu F, Fini PT, Speck JS, Nakamura S (2005) Characterization of planar semipolar gallium nitride films on spinel substrates. Jpn J Appl Phys 44:L920CrossRefGoogle Scholar
  9. 9.
    Okada N, Oshita H, Yamane K, Tadatomo K (2011) High-quality {20-21} GaN layers on patterned sapphire substrate with wide-terrace. Appl Phys Lett 99:242103CrossRefGoogle Scholar
  10. 10.
    Yamane K, Ueno M, Uchida K, Furuya H, Okada N, Tadatomo K (2012) Reduction in dislocation density of semipolar GaN layers on patterned sapphire substrates by hydride vapor phase epitaxy. Appl Phys Express 5:095503CrossRefGoogle Scholar
  11. 11.
    Schwaiger S, Argut I, Wunderer T, Rosch R, Lipski F, Biskupek J, Kaiser U, Scholz F (2010) Planar semipolar(10-11) GaN on (11-23) sapphire. Appl Phys Lett 96:231905CrossRefGoogle Scholar
  12. 12.
    Honda Y, Kawaguchi Y, Ohtake Y, Tanaka S, Yamaguchi M, Sawaki N (2001) Selective area growth of GaN microstructures on patterned (111) and (001) Si substrates. J Cryst Growth 230:346CrossRefGoogle Scholar
  13. 13.
    Okada N, Kurisu A, Murakami K, Tadatomo K (2009) Growth of Semipolar (11–22) GaN layer by controlling anisotropic growth rates in r-plane patterned sapphire substrate. Appl Phys Express 2:091001CrossRefGoogle Scholar
  14. 14.
    Yamane K, Inagaki T, Hashimoto Y, Koyama M, Okada N, Tadatomo K (2014) Characterization of structural defects in semipolar {20-21} GaN layers grown on {22-43} patterned sapphire substrates. Jpn J Appl Phys 53:035502Google Scholar
  15. 15.
    Kawashima T, Nagai T, Iida D, Miura A, Okadome Y, Tsuchiya Y, Iwaya M, Kamiyama S, Amano H, Akasaki I (2007) Reduction in defect density over whole area of (1-100) m-plane GaN using one-sidewall seeded epitaxial lateral overgrowth. Phys Status Solidi B 244:1848CrossRefGoogle Scholar
  16. 16.
    Miyake H, Motogaito A, Hiramatsu K (1999) Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy. Jpn J Appl Phys 38:L1000CrossRefGoogle Scholar
  17. 17.
    Mei J, Srinivasan S, Liu R, Ponce FA, Narukawa Y, Mukai T (2006) Prismatic stacking faults in epitaxially laterally overgrown GaN. Appl Phys Lett 88:141912CrossRefGoogle Scholar
  18. 18.
    Stampfl C, Van de Walle CG (1998) Energetics and electronic structure of stacking faults in AlN, GaN, and InN. Phys Rev B 57:R15052CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yasuhiro Hashimoto
    • 1
  • Masakazu Koyama
    • 1
  • Takashi Inagaki
    • 1
  • Keisuke Yamane
    • 1
  • Narihito Okada
    • 1
  • Kazuyuki Tadatomo
    • 1
    Email author
  1. 1.Graduate School of Science and EngineeringYamaguchi UniversityYamaguchiJapan

Personalised recommendations