Skip to main content

A Uniformly Converging Scheme for Fractal Conservation Laws

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 77))

  • 1266 Accesses

Abstract

The fractal conservation law \(\partial _t u + \partial _x(f(u))+(-\varDelta )^{{\alpha }/2}u=0\) changes characteristics as \({\alpha }\rightarrow 2\) from non-local and weakly diffusive to local and strongly diffusive. In this paper we present a corrected finite difference quadrature method for \((-\varDelta )^{{\alpha }/2}\) with \({\alpha }\in [0,2]\), combined with usual finite volume methods for the hyperbolic term, that automatically adjusts to this change and is uniformly convergent with respect to \({\alpha }\in [\eta ,2]\) for any \(\eta >0\). We provide numerical results which illustrate this asymptotic-preserving property as well as the non-uniformity of previous finite difference or finite volume type of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfaro, M., Droniou, J.: General fractal conservation laws arising from a model of detonations in gases. Appl. Math. Res. Express 2012, 127–151 (2012)

    MATH  MathSciNet  Google Scholar 

  2. Alibaud, N.: Entropy formulation for fractal conservation laws. J. Evol. Equ. 7(1), 145–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alibaud, N., Andreianov, B.: Non-uniqueness of weak solutions for the fractal Burgers equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(4), 997–1016 (2010)

    Google Scholar 

  4. Alibaud, N., Droniou, J., Vovelle, J.: Occurrence and non-appearance of shocks in fractal burgers equations. J. Hyperbolic Differ. Equ. 4(3), 479–499 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Asmussen, S., Rosiński, J.: Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Probab. 38(2), 482–493 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biler, P., Karch, G., Woyczynski, W.: Fractal Burgers equations. J. Diff. Equ. 148, 9–46 (1998)

    Article  MATH  Google Scholar 

  7. Chan, R., Ng, M.: Conjugate gradient methods for toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cifani, S., Jakobsen, E.R.: On numerical methods and error estimates for degenerate fractional convection-diffusion equations. To appear in Numer. Math. doi: 10.1007/s00211-013-0590-0

  9. Cifani, S., Jakobsen, E.R.: On the spectral vanishing viscosity method for periodic fractional conservation laws. Math. Comp. 82(283), 1489–1514 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cifani, S., Jakobsen, E.R., Karlsen, K.H.: The discontinuous galerkin method for fractal conservation laws. IMA J. Numer. Anal. 31(3), 1090–1122 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Clavin, P.: Instabilities and Nonlinear Patterns of Overdriven Detonations in Gases. Kluwer (2002)

    Google Scholar 

  12. Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman and Hall/CRC, Boca Raton (2004)

    Google Scholar 

  13. Droniou, J.: A numerical method for fractal conservation laws. Math. Comp. 79(269), 95–124 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Droniou, J., Gallouët, T., Vovelle, J.: Global solution and smoothing effect for a non-local regularization of an hyperbolic equation. J. Evol. Equ. 3(3), 499–521 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Droniou, J., Imbert, C.: Fractal first order partial differential equations. Arch. Ration. Mech. Anal. 182(2), 299–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Droniou, J., Jakobsen, E.R.: An asymptotic-preserving scheme for fractal conservation laws and fractional degenerate parabolic equations (In preparation)

    Google Scholar 

  17. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  18. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences, vol. 118. Springer, New-York (1996)

    Google Scholar 

  19. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, New York (2002)

    Google Scholar 

  20. Jakobsen, E.R., Karlsen, K.H., La Chioma, C.: Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math. 110(2), 221–255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jourdain, B., Méléard, S., Woyczynski, W.: Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws. Bernoulli 11(4), 689–714 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kruzhkov, S.N.: First order quasilinear equations with several independent variables. Math. Sb. (N.S.) 81(123), 228–255 (1970)

    Google Scholar 

  23. Soner, H.: Optimal control with state-space constraint ii. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Google Scholar 

  24. Stanescu, D., Kim, D., Woyczynski, W.: Numerical study of interacting particles approximation for integro-differential equations. J. Comput. Phys. 206, 706–726 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Google Scholar 

  26. Woyczynski, W.: Lévy Processes in the Physical Sciences. Birkhäuser, Boston (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Droniou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Droniou, J., Jakobsen, E.R. (2014). A Uniformly Converging Scheme for Fractal Conservation Laws. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer Proceedings in Mathematics & Statistics, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-05684-5_22

Download citation

Publish with us

Policies and ethics