Skip to main content

Configuration Spaces of the Affine Line and their Automorphism Groups

  • Conference paper
  • First Online:
Automorphisms in Birational and Affine Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 79))

Abstract

The configuration space \(\mathcal{C}^{n}(X)\) of an algebraic curve X is the algebraic variety consisting of all n-point subsets QX. We describe the automorphisms of \(\mathcal{C}^{n}(\mathbb{C})\), deduce that the (infinite dimensional) group \(\mathrm{Aut}\,\,\mathcal{C}^{n}(\mathbb{C})\) is solvable, and obtain an analog of the Mostow decomposition in this group. The Lie algebra and the Makar-Limanov invariant of \(\mathcal{C}^{n}(\mathbb{C})\) are also computed. We obtain similar results for the level hypersurfaces of the discriminant, including its singular zero level.

2010 Mathematics Subject Classification: 14R20, 32M17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The upper index will usually mean the dimension of the variety.

  2. 2.

    The rank of an affine algebraic group is the dimension of its maximal tori.

  3. 3.

    The complex Weyl chamber of type B studied in [35] is isomorphic to \(\mathcal{C}^{n}(\mathbb{C}^{{\ast}})\).

  4. 4.

    See [18] for further examples of non-cancellation.

  5. 5.

    The authors thank S. Kaliman for a useful discussion, where the latter observation appeared.

  6. 6.

    Since D n is homogeneous, any hypersurface D n (Q) = c ≠ 0 is isomorphic to \(\mathcal{S}\mathcal{C}^{n-1}\).

  7. 7.

    See Sect. 4.5 below.

  8. 8.

    Due to a result of Iitaka [16, Proposition 5] the latter assumption holds if the regular locus \(\mathrm{reg}\,\mathcal{X}\) is of non-negative logarithmic Kodaira dimension. Moreover, in this case \(\mathrm{Aut}_{0}\,\mathcal{X}\) is an algebraic torus.

  9. 9.

    In the Arxive version of this paper we provide a proof of this theorem conformal to our notation.

  10. 10.

    This is not a stratification of \(\mathrm{sing}\,\Sigma ^{n-1}\) since \(\Sigma _{\mathrm{Maxw}}^{n-2} \cap \Sigma _{\mathrm{cau}}^{n-2}\neq \varnothing \).

  11. 11.

    In view of Theorem 8.2 , for n > 4 any non-Abelian holomorphic endomorphism of \(\mathcal{C}_{\mathrm{blc}}^{n-1}\) is surjective.

References

  1. V.I. Arnold, On some topological invariants of algebraic functions, I. Trudy Moskov. Mat. Obshch. 21, 27–46 (1970) (Russian) [English translation: Trans. Moscow Math. Soc. 21, 30–52 (1970)]

    Google Scholar 

  2. I.V. Arzhantsev, K. Kuyumzhiyan, M. Zaidenberg, Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity. Sb. Math. 203, 3–30 (2012)

    Article  MathSciNet  Google Scholar 

  3. I.V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Bandman, L. Makar-Limanov, Cylinders over Affine Surfaces, 14 pp. (1998) [arXiv:math/9807146]

    Google Scholar 

  5. N. Bruschlinsky, Stetige Abbildungen und Bettische Gruppen der Dimensionzahl 1 und 3. Math. Ann. 109, 525–537 (1934)

    Article  MathSciNet  Google Scholar 

  6. R. Dryło, Non-uniruledness and the cancellation problem, I. Ann. Polon. Math. 87, 93–98 (2005); II. Ann. Polon. Math. 92, 41–48 (2007)

    Google Scholar 

  7. R. Dryło, A remark on a paper of Crachiola and Makar-Limanov. Bull. Pol. Acad. Sci. Math. 59(3), 203–206 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Eilenberg, Transformations continues en circonférence et la topologie du plan. Fund. Math. 26, 61–112 (1936)

    Google Scholar 

  9. S. Eilenberg, Généralisation du théorème de M. H. Hopf sur les classes des transformations en surfaces sphériques. Compos. Math. 6, 428–433 (1939)

    MathSciNet  Google Scholar 

  10. Y. Feler, Configuration spaces of tori. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18(2), 139–151 (2007)

    Google Scholar 

  11. T.J. Ford, The Group of Units on an Affine Variety, 22 pp. (2013) [arXiv:1303.5687]

    Google Scholar 

  12. G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol. 136, Invariant Theory and Algebraic Transformation Groups, vol. VII (Springer, Berlin, 2006)

    Google Scholar 

  13. E.A. Gorin, V.Ja. Lin, Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids. Mat. Sb. (N.S.) 78(120)(4), 579–610 (1969) (Russian) [English translation: Math. USSR-Sb. 7(4), 569–596 (1969)]

    Google Scholar 

  14. G. Hochschild, Cohomology of algebraic linear groups. Ill. J. Math. 5(3), 492–519 (1961)

    MATH  MathSciNet  Google Scholar 

  15. J.E. Humphreys, Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21 (Springer, New York, 1975), 247 pp.

    Google Scholar 

  16. S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in Complex Analysis and Algebraic Geometry (Iwanami Shoten, Tokyo, 1977), pp. 175–189

    Google Scholar 

  17. Z. Jelonek, Testing sets for properness of polynomial mappings. Math. Ann. 315, 1–35 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Z. Jelonek, On the cancellation problem. Math. Ann. 344, 769–778 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. S.I. Kaliman, Holomorphic endomorphisms of the manifold of complex polynomials with discriminant 1. Uspehi Mat. Nauk 31(1), 251–252 (1976) (Russian)

    MATH  MathSciNet  Google Scholar 

  20. S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204 (Birkhuser, Boston, 2002)

    Google Scholar 

  21. V.Ya. Lin, Algebraic functions with universal discriminant manifolds, Funkt. Analiz i Priloz. 6(1), 81–82 (1972) (Russian) [English translation: Funct. Anal. Appl. 6(1), 73–74 (1972)]

    Google Scholar 

  22. V.Ya. Lin, Artin braids and the groups and spaces connected with them, in Itogi Nauki i Tekhniki. Algebra, Topologiya, Geometriya, vol. 17 (VINITI, Moscow, 1979), pp. 159–227 (Russian). [English translation: J. Soviet Math. 18, 736–788 (1982)]

    Google Scholar 

  23. V.Ya. Lin, Braids, permutations, polynomials-I, Max-Planck-Institute für Mathematik, Bonn, MPI 96–118, 112 pp. (1996), http://www.mpim-bonn.mpg.de/preblob/3958

  24. V.Ya. Lin, Configuration spaces of \(\mathbb{C}\) and \(\mathbb{C}\mathbb{P}^{1}\) : Some analytic properties, Max-Planck-Institute für Mathematik, Bonn, MPI 2003-98, 80 pp. (2003), http://www.mpim-bonn.mpg.de/preblob/2266

  25. V.Ya. Lin, Braids and Permutations, 112 pp. (2004), http://arxiv.org/abs/math/0404528v1

  26. V.Ya. Lin, Configuration Spaces of \(\mathbb{C}\) and \(\mathbb{C}\mathbb{P}^{1}\) : Some Analytic Properties, 89 pp. (2004) [arxiv.org/abs/math/0403120v3]

    Google Scholar 

  27. V.Ya. Lin, Algebraic functions, configuration spaces, Teichmüller spaces, and new holomorphically combinatorial invariants. Funkt. Analiz i Priloz. 45(3), 55–78 (2011) (Russian) [English translation: Funct. Anal. Appl. 45(3), 204–224 (2011)]

    Google Scholar 

  28. O.V. Ljashko, Geometry of bifurcation diagrams. Uspehi Mat. Nauk 34(3), 205–206 (1979) (Russian)

    Google Scholar 

  29. G.D. Mostow, Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  30. F.Napolitano, Topology of complements of strata of the discriminant of polynomials. C. R. Acad. Sci. Paris Sér. I Math. 327, 665–670 (1998)

    Google Scholar 

  31. V.P. Platonov, A.S. Rapinchuk, Algebraic Groups and Number Theory (Nauka, Moscow, 1991) (Russian) [English translation: V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory. Pure and Applied Mathematics, vol. 139 (Academic, Boston, 1994)]

    Google Scholar 

  32. C.P. Ramanujam, A note on automorphism groups of algebraic varieties. Math. Ann. 156, 25–33 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Samuel, À propos du théorème des unités. Bull. Sci. Math. 90(2), 89–96 (1966)

    MATH  MathSciNet  Google Scholar 

  34. I.R. Shafarevich, On some infinite-dimensional groups, II. Math. USSR Izv. 18, 185–194 (1982)

    Article  MATH  Google Scholar 

  35. V.M. Zinde, Holomorphic mappings of the spaces of regular orbits of Coxeter groups of series B and D. Sibirsk. Mat. Zh. 18(5), 1015–1026 (1978) (Russian) [English translation: Siberian Math. J. 18(5), 716–724 (1978)]. http://link.springer.com/content/pdf/10.1007%2FBF00967010.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Zaidenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, V., Zaidenberg, M. (2014). Configuration Spaces of the Affine Line and their Automorphism Groups. In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_24

Download citation

Publish with us

Policies and ethics