Skip to main content

Deformations of \(\mathbb{A}^{1}\)-Fibrations

  • Conference paper
  • First Online:
Automorphisms in Birational and Affine Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 79))

Abstract

Let B be an integral domain which is finitely generated over a subdomain R and let D be an R-derivation on B such that the induced derivation \(D_{\mathfrak{m}}\) on \(B \otimes _{R}R/\mathfrak{m}\) is locally nilpotent for every maximal ideal \(\mathfrak{m}\). We ask if D is locally nilpotent. Theorem 2.1 asserts that this is the case if B and R are affine domains.We next generalize the case of G a -action treated in Theorem 2.1 to the case of \(\mathbb{A}^{1}\)-fibrations and consider the log deformations of affine surfaces with \(\mathbb{A}^{1}\)-fibrations. The case of \(\mathbb{A}^{1}\)-fibrations of affine type behaves nicely under log deformations, while the case of \(\mathbb{A}^{1}\)-fibrations of complete type is more involved [see Dubouloz–Kishimoto (Log-uniruled affine varieties without cylinder-like open subsets, arXiv: 1212.0521, 2012)].As a corollary, we prove the generic triviality of \(\mathbb{A}^{2}\)-fibration over a curve and generalize this result to the case of affine pseudo-planes of ML0-type under a suitable monodromy condition.

2000 Mathematics Subject Classification: Primary: 14R20; Secondary: 14R25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The result is also remarked in [3, Remark 13].

  2. 2.

    When we write t ∈ T, we tacitly assume that t is a closed point of T.

  3. 3.

    In order to avoid the misreading, it is better to specify our definition of simple normal crossings in the case of dimension three. We assume that every irreducible component S i of S and every fiber \(\overline{Y }_{t}\) are smooth and that analytic-locally at every intersection point P of \(S_{i} \cap S_{j}\) (resp. \(S_{i} \cap S_{j} \cap S_{k}\) or \(S_{i} \cap \overline{Y }_{t}\)), S i and S j (resp. \(S_{i},S_{j}\) and S k , or S i and \(\overline{Y }_{t}\)) behave like coordinate hypersurfaces. Hence \(S_{i} \cap S_{j}\) or \(S_{i} \cap \overline{Y }_{t}\) are smooth curves at the point P.

  4. 4.

    We note here that without the condition on the absence of the monodromy of the cross-section, the assertion fails to hold. See Example 3.6.

References

  1. G. Bredon, Topology and Geometry. Graduate Texts in Mathematics, vol. 139 (Springer, New York, 1993)

    Google Scholar 

  2. C.H. Clemens, P.A. Griffiths, The intermediate Jacobian of the cubic threefold. Ann. Math. 95(2), 281–356 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Dubouloz, T. Kishimoto, Log-uniruled affine varieties without cylinder-like open subsets. arXiv: 1212.0521 (2012)

    Google Scholar 

  4. T. Fujita, On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 503–566 (1982)

    MATH  MathSciNet  Google Scholar 

  5. H. Flenner, M. Zaidenberg, \(\mathbb{Q}\) -Acyclic Surfaces and Their Deformations, Classification of Algebraic Varieties (L’Aquila, 1992). Contemporary Mathematics, vol. 162 (American Mathematical Society, Providence, 1994), pp. 143–208

    Google Scholar 

  6. H. Flenner, Sh. Kaliman, M. Zaidenberg, Deformation equivalence of affine ruled surfaces. arXiv:1305.5366v1, 23 May 2013

    Google Scholar 

  7. A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki, 13e année, 1960/61, no. 221, 1–28

    Google Scholar 

  8. R.V. Gurjar, K. Masuda, M. Miyanishi, \(\mathbb{A}^{1}\)-fibrations on affine threefolds. J. Pure Appl. Algebra 216, 296–313 (2012)

    Google Scholar 

  9. R.V. Gurjar, K. Masuda, M. Miyanishi, Surjective derivations in small dimensions. J. Ramanujan Math. Soc. 28A(Special Issue), 221–246 (2013)

    Google Scholar 

  10. R.V. Gurjar, K. Masuda, M. Miyanishi, P. Russell, Affine lines on affine surfaces and the Makar-Limanov invariant. Can. J. Math. 60(1), 109–139 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Hartshorne, Algebraic Geometry (Springer, New York, 1977)

    Book  MATH  Google Scholar 

  12. S. Iitaka, Deformations of Compact Complex Surfaces. Global Analysis (Papers in Honor of K. Kodaira) (Univ. Tokyo Press, Tokyo, 1969), pp. 267–272

    Google Scholar 

  13. T. Kambayashi, On the absence of nontrivial separable forms of the affine plane. J. Algebra 35, 449–456 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Kambayashi, M. Miyanishi, On flat fibrations by the affine line. Illinois J. Math. 22, 662–671 (1978)

    MATH  MathSciNet  Google Scholar 

  15. T. Kambayashi, D. Wright, Flat families of affine lines are affine line bundles. Illinois J. Math. 29, 672–681 (1985)

    MATH  MathSciNet  Google Scholar 

  16. Sh. Kaliman, M. Zaidenberg, Families of affine planes: the existence of a cylinder. Michigan Math. J. 49(2), 353–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Kawamata, On deformations of compactifiable complex manifolds. Math. Ann. 235(3), 247–265 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Kawamata, On the classification of non-complete algebraic surfaces, in Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978). Lecture Notes in Mathematics, vol. 732 (Springer, Berlin, 1979), pp. 215–232

    Google Scholar 

  19. K. Kodaira, On the stability of compact submanifolds of complex manifolds. Am. J. Math. 85, 79–94 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics (Springer, Berlin, 1986)

    Google Scholar 

  21. J. Kollar, Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32 (Springer, Berlin, 1996)

    Google Scholar 

  22. J. Kollar, S. Mori, Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  23. M. Miyanishi, An algebro-topological characterization of the affine space of dimension three. Am. J. Math. 106, 1469–1486 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Miyanishi, Affine pseudo-coverings of algebraic surfaces. J. Algebra 294, 156–176 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. J.A. Morrow, Minimal normal compactifications of \(\mathbb{C}^{2}\), in Complex Analysis (Proc. Conf. Rice Univ., Houston, Tex., 1972), Vol. I: Geometry of Singularities. Rice Univ. Studies, vol. 59, no. 1 (1973), pp. 97–112

    Google Scholar 

  26. W.D. Neumann, On the topology of curves in complex surfaces, in Topological Methods in Algebraic Transformation Groups. Progress in Mathematics, vol. 80 (Birkhauser, Boston, 1989), pp. 117–133

    Google Scholar 

  27. C.P. Ramanujam, A topological characterization of the affine plane as an algebraic variety. Ann. Math. 94, 69–88 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Russell, Embeddings problems in affine algebraic geometry, in Polynomial Automorphisms and Related Topics (Publishing House for Science and Technology, Hanoi, 2007), pp. 113–135

    Google Scholar 

  29. A. Sathaye, Polynomial ring in two variables over a DVR: a criterion. Invent. Math. 74(1), 159–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. R.O. Wells, Differential Analysis on Complex Manifolds. Graduate Texts in Mathematics, vol. 65 (Springer, New York, 2008)

    Google Scholar 

Download references

Acknowledgements

The second and third authors are supported by Grant-in-Aid for Scientific Research (C), No. 22540059 and (B), No. 24340006, JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Miyanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gurjar, R.V., Masuda, K., Miyanishi, M. (2014). Deformations of \(\mathbb{A}^{1}\)-Fibrations. In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_19

Download citation

Publish with us

Policies and ethics