Skip to main content

Normal Analytic Compactifications of \(\mathbb{C}^{2}\)

  • Conference paper
  • First Online:
Automorphisms in Birational and Affine Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 79))

Abstract

This is a survey of some results on the structure and classification of normal analytic compactifications of \(\mathbb{C}^{2}\). Mirroring the existing literature, we especially emphasize the compactifications for which the curve at infinity is irreducible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that C has one place at infinity iff C meets the line at infinity at only one point Q and C is unibranch at Q.

  2. 2.

    \(\bar{X}\) is a “minimal normal compactification” (in the sense of Morrow), or in modern terminology, a minimal SNC-compactification of \(X:= \mathbb{C}^{2}\) iff (i) \(\bar{X}\) is non-singular, (ii) each \(\Gamma _{i}\) is non-singular, (iii) C has at most normal-crossing singularities, and (iv) for all \(\Gamma _{i}\) with self-intersection − 1, contracting \(\Gamma _{i}\) destroys some of the preceding properties.

  3. 3.

    Recall that an isolated singular point P on a surface Y is sandwiched if there exists a birational map Y → Y ′ such that the image of P is non-singular. Sandwiched singularities are rational [15, Proposition 1.2].

References

  1. S.S. Abhyankar, T.T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation, I, II. J. Reine Angew. Math. 260, 47–83, (1973); J. Reine Angew. Math. 261, 29–54 (1973)

    Google Scholar 

  2. L. Brenton, A note on compactifications of C 2. Math. Ann. 206, 303–310 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Brenton, On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of C 2 and to 3-dimensional rational singularities. Math. Ann. 248(2), 117–124 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Brenton, D. Drucker, G.C.E. Prins, Graph theoretic techniques in algebraic geometry, I, in The Extended Dynkin Diagram \(\bar{E}_{8}\) and Minimal Singular Compactifications of C 2. Annals of Mathematics Studies, vol. 100 (Princeton University Press, Princeton, 1981), pp. 47–63

    Google Scholar 

  5. C. Favre, M. Jonsson, in The Valuative Tree. Lecture Notes in Mathematics, vol. 1853 (Springer, Berlin, 2004)

    Google Scholar 

  6. H. Flenner, M. Zaidenberg, Rational curves and rational singularities. Math. Z. 244(3), 549–575 (2003)

    MATH  MathSciNet  Google Scholar 

  7. M. Fujimoto, M. Suzuki, Construction of affine plane curves with one place at infinity. Osaka J. Math. 39(4), 1005–1027 (2002)

    MATH  MathSciNet  Google Scholar 

  8. M. Furushima, On minimal compactifications of C 2. Math. Nachr. 186, 115–129 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Furushima, Errata to the paper: On the minimal compactifications of C 2 [Math. Nachr. 186, 115–129 (1997); MR1461216 (98e:32049)]. Math. Nachr. 193, 255 (1998)

    Google Scholar 

  10. H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Hirzebruch, Some problems on differentiable and complex manifolds. Ann. Math. 60(2), 213–236 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Kojima, Minimal singular compactifications of the affine plane. Nihonkai Math. J. 12(2), 165–195 (2001)

    MATH  MathSciNet  Google Scholar 

  13. H. Kojima, T. Takahashi, Notes on minimal compactifications of the affine plane. Ann. Mat. Pura Appl. (4) 188(1), 153–169 (2009)

    Google Scholar 

  14. H.B. Laufer, On minimally elliptic singularities. Am. J. Math. 99(6), 1257–1295 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math. 36, 195–279 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Miyanishi, D.-Q. Zhang, Gorenstein log del Pezzo surfaces of rank one. J. Algebra 118(1), 63–84 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Mondal, Analytic compactifications of 2. Part I: Curvettes at infinity (2011), http://arxiv.org/abs/1110.6905

  18. P. Mondal, Analytic compactifications of \(\mathbb{C}^{2}\). II: One irreducible curve at infinity (2013), http://arxiv.org/abs/1307.5577

  19. P. Mondal, An effective criterion for algebraic contractibility of rational curves (2013), http://arxiv.org/abs/1301.0126

  20. J.A. Morrow, Compactifications of C 2. Bull. Am. Math. Soc. 78, 813–816 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Ohta, Normal hypersurfaces as a compactification of \(\mathbb{C}^{2}\). Kyushu J. Math. 55(1), 165–181 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Palka, Classification of singular \(\mathbb{Q}\)-homology planes. I: Structures and singularities. Israel J. Math. 195, 37–69 (2012)

    MathSciNet  Google Scholar 

  23. R. Remmert, T. van de Ven, Zwei Sätze über die komplex-projektive Ebene. Nieuw. Arch. Wisk. 8(3), 147–157 (1960)

    MATH  MathSciNet  Google Scholar 

  24. A. Sathaye, On planar curves. Am. J. Math. 99(5), 1105–1135 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Schröer, On contractible curves on normal surfaces. J. Reine Angew. Math. 524, 1–15 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Suzuki, Affine plane curves with one place at infinity. Ann. Inst. Fourier (Grenoble) 49(2), 375–404 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mondal, P. (2014). Normal Analytic Compactifications of \(\mathbb{C}^{2}\) . In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_10

Download citation

Publish with us

Policies and ethics