Skip to main content

Crop Growth Simulation Modeling

  • Chapter
  • First Online:
Modelling and Simulation of Diffusive Processes

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

Agricultural crops include various plant species grown on the farm for food and fiber. Increase in the world population demands increase in the agricultural production as well as efficient management of resources in the form of precision agriculture through crop growth models to facilitate measured amounts of inputs to obtain desired quantity and quality of crop output. Crop growth simulation models integrate crop physiology, weather parameters, soil parameters, and management practices to simulate growth and yield of crops. These models compute growth values on a day to day basis, using relationships among input such as nutrients, water, weather parameters, etc. to predict values of crop growth parameters. Crop-specific model design results in poor modularity and prevents model sharing. A generic model uses common crop physiological processes. Validating and fine tuning the crop model is an important step before using it for actual prediction tasks. A number of crop growth models have been developed since 1980s. Future crop models should rely on improving the mechanism of interaction with environment, breeding programs, and microscale studies on individual crop growth components such as nutrients dispersion, CO2 diffusion, etc. The models should be able to predict crop yields under siteā€specific soils, input, and weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans Royal Soc 365:2835ā€“2851

    ArticleĀ  Google ScholarĀ 

  2. Indian Council of Agricultural Research (2011) Vision ICAR 2030. Krishi Bhawan, New Delhi

    Google ScholarĀ 

  3. IAASTD (2008) Agriculture at a crossroads: the synthesis report. Washington, DC: International Assessment of Agricultural Knowledge, Science and Technology for Development. www.agassessment.org/

  4. Sinclair TR, Seligman NG (1996) Crop modeling: from infancy to maturity. Agron J 88:698ā€“704

    ArticleĀ  Google ScholarĀ 

  5. Zhu XG, Zhang GL, Tholen D, Wang Y, Xin C, Song Q (2011) The next generation models for crops and agro-ecosystems. Sci China Information Sci 54:589ā€“597

    ArticleĀ  Google ScholarĀ 

  6. Timmerman A, Feyen J (2003) The wave model and its application; simulation of the substances water and agrochemicals in the soil, crop and vadose environment. Revista CORPOICA 4:36ā€“41

    Google ScholarĀ 

  7. Oteng-Darko P, Yeboah S, Addy SNT, Amponsah S, Danquah EO (2013) Crop modeling: a tool for agricultural researchā€”a review. J Agric Res Dev 2(1):1ā€“6

    ArticleĀ  Google ScholarĀ 

  8. De Wit CT, Brouwer R, Penning De Vries FWT (1970) The simulation of photosynthetic systems, in prediction and measurement of photosynthetic productivity. In: Setlik I (ed) Proceedings of international biological program/plant production technical meeting. PUDOC, Wageningen

    Google ScholarĀ 

  9. De Wit CT, Goudriaan J (1978) Simulation of assimilation, respiration and transpiration of crops. Simulation monograph. PUDOC, Wageningen

    Google ScholarĀ 

  10. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Europ J Agron 18:235ā€“265

    ArticleĀ  Google ScholarĀ 

  11. McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP, Freebairn DM (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst 50:255ā€“271

    ArticleĀ  Google ScholarĀ 

  12. Wang E, Robertson MJ, Hammer GL, Carberry PS, Holzworth D, Meinke H, Chapman SC, Hargreaves JNG, Huth NI, Mclean G (2002)Development of a generic crop model template in the cropping system model APSIM. Europ J Agron 18:121ā€“140

    ArticleĀ  Google ScholarĀ 

  13. Aggarwal PK, Kalra N, Chander S, Pathak H (2006) Infocrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agric Syst 89:1ā€“25

    ArticleĀ  Google ScholarĀ 

  14. Fourcaud T, Zhang X, Stokes A, Lambers H, Korner C (2008) Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann Bot (Lond) 101:1053ā€“1063

    ArticleĀ  Google ScholarĀ 

  15. Gertsis AC, Galanopoulou-Sendouca S, Papathanasiou G, Symeonakis A (1997) Use of GOSSYMā€”a cotton growth simulation model to manage a low input cotton production system in Greece. In: Proceedings for the first European conference for information technology in agriculture, Copenhagen, ppĀ 359ā€“362

    Google ScholarĀ 

  16. Van Kraalingen DWG, Rappoldt C, Van Laar HH (2003) The Fortran simulation translator: a simulation language. Europ J Agron 18:359ā€“361

    ArticleĀ  Google ScholarĀ 

  17. Cheeroo-Nayamuth BF: (2000) Crop modelling/simulation: an overview. In: Lalouette JA, Bachraz DY, Sukurdeep N (eds.) Proceedings of the Fourth Annual Meeting of Agricultural Scientists, RĆ©duit, Mauritius, 21ā€“22 October 1999. RĆ©duit, Mauritius

    Google ScholarĀ 

  18. Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T (2012) Performance evaluation of aquacrop model for maize crop in a semi-arid environment. Agric Water Manag 110:55ā€“66

    ArticleĀ  Google ScholarĀ 

  19. Singels A, Bezuidenhout CN (2002) A new method of simulating dry matter partitioning in the Canegro sugarcane model. Field Crops Res 78(2ā€“3):151ā€“164

    ArticleĀ  Google ScholarĀ 

  20. Singh AK, Goyal V, Mishra AK, Parihar SS (2013) Validation of Cropsyst simulation model for direct seeded riceā€“wheat cropping system. Current Sci 104(10):1324ā€“1331

    Google ScholarĀ 

  21. Casanova D, Goudriaan J, Bosch AD (2000)Testing the performance of ORYZA1, an explanatory model for rice growth simulation, for Mediterranean conditions. Europ J Agron 12:175ā€“189

    ArticleĀ  Google ScholarĀ 

  22. Kumar SN, Kasturi Bai KV, Rajagopal V, Aggarwal PK (2008) Simulating coconut growth, development and yield with the InfoCrop-coconut model. Tree Physiol 28:1049ā€“1058

    ArticleĀ  Google ScholarĀ 

  23. Jackson BS, Arkin GF, Hearn AB (1988) The cotton simulation model ā€œCOTTAMā€: fruiting model calibration and testing. Trans ASABE 31(3):846ā€“854

    ArticleĀ  Google ScholarĀ 

  24. Mckinion JM, Baker DN, Whisler FD, Lambert JR (1989) Application of GOSSYM/COMAX system to cotton crop management. Agric Syst 31:55ā€“65

    ArticleĀ  Google ScholarĀ 

  25. Van Diepen CA, Wolf J, van Keulen H (1989) WOFOST: a simulation model of crop production. Soil Use Manag 5(1):16ā€“24

    ArticleĀ  Google ScholarĀ 

  26. Stƶckle CO, Martin SA, Campbell GS (1994) Cropsyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46(3):335ā€“359

    ArticleĀ  Google ScholarĀ 

  27. Wiles LJ, King RP, Schweizer EE, Lybecker DW, Swinton SM (1996) GWM: general weed management model. Agric Syst 50(4):355ā€“376

    ArticleĀ  Google ScholarĀ 

  28. Greenwald R, Bergin MH, Xu J, Cohan D, Hoogenboom G, Chameides WL (2006) The influence of aerosols on crop production: a study using the CERES crop model. Agric Syst 89:390ā€“413

    ArticleĀ  Google ScholarĀ 

  29. Steduto P, Hsiao TC, Raes D, Fereres E (2009) Aquacropā€”the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101(3):426ā€“437

    ArticleĀ  Google ScholarĀ 

  30. Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crop models. Agron J 88:704ā€“716

    ArticleĀ  Google ScholarĀ 

  31. Amjed A, Sanjani S, Hoogenboom G, Ahmad A, Khaliq T, Wajid SA, Noorka IR, Ahmad S (2012) Application of crop growth models in agriculture of developing countries: a review. New Hor Sci Technol 1(4):95ā€“99

    Google ScholarĀ 

  32. Langensiepen MF, Bergamaschi M, Grasle W, Scholberg J (1999) Are the crop models universally applicable? In: Proceedings of International Symposium on Modeling Cropping Systems, June 21ā€“23, 1999, Lleida, Spain

    Google ScholarĀ 

  33. Evers JB, Vos J, Buck-Sorlin GH (2008) Considering plant structure in models of plant growth and development. In: Keulen HV, Van Laar HH, Rabbinge R (eds.) 40 years theory and model at Wageningen UR, Wageningen University and Research Centre, The Netherlands, ppĀ 15ā€“19

    Google ScholarĀ 

  34. Xinyou Y, Struik PC (2012) Modelling gene-trait-crop relationships: past experiences and future prospects. Acta Hortic 957:181ā€“189

    Google ScholarĀ 

  35. Meinke H, Stuik PC, Vos J, Der Werf WV (2008) Modelling that bridges scales and connects disciplines. In: Keulen HV, Van Laar HH, Rabbinge R (eds) 40 Years Theory and model at Wageningen UR, Wageningen University and Research Centre, The Netherlands, pp.Ā 37ā€“45

    Google ScholarĀ 

  36. Ho QT, Verboven P, Yin X, Struik PC, Nicolai BM (2012) A microscale model for combined CO2 diffusion and photosynthesis in leaves. PLoS ONE 7(11):e48376

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avnish Kumar Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, A. (2014). Crop Growth Simulation Modeling. In: Basu, S., Kumar, N. (eds) Modelling and Simulation of Diffusive Processes. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-05657-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05657-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05656-2

  • Online ISBN: 978-3-319-05657-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics