Skip to main content

The Problem of Futile Cycles in Metabolic Flux Modeling: Flux Space Characterization and Practical Approaches to Its Solution

  • Chapter
  • First Online:
Modelling and Simulation of Diffusive Processes

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

In the past decade, metabolic flux modeling has been established as an important technique to elucidate detailed snapshot information on a complex cellular system. The basis of such modeling is flux balance analysis, which can identify the optimal flux distribution of a particular phenotype of the system based on physicochemical properties. However, characterization of the functional states of a large-scale system can yield alternate optimal solutions (AOS) and the resultant flux distributions are commonly obscured with the presence of futile cycles in a complex system. Here, we review the current flux modeling techniques for characterization of multiple equally valid cellular phenotypes and explore the fundamentals of the occurrences of futile cycles in a system. We consider that most of the futile cycles are by-products of the numerical techniques and are not biologically relevant. In order to tackle the problem of cycles, we present some rational approaches to efficiently eliminate the meaninglessly high flux values arising from the presence of the cycles, without degrading the functional states of systems. Our novel methods discussed here only use the known stoichiometry of the network and are straightforward to apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Filippo C, Ramazzotti M, Fontana P, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 13:696–710

    Article  Google Scholar 

  2. Zhu H, Snyder M (2002) ‘Omic’ approaches for unraveling signaling networks. Curr Opin Cell Biol 14:173–179

    Article  Google Scholar 

  3. Thiele I, Jamshidi N, Fleming RMT, Palsson B.Ø (2009) Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5:e1000312

    Article  MathSciNet  Google Scholar 

  4. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23:617–623

    Article  Google Scholar 

  5. Osterlund T, Nookaew I, Nielsen J (2011) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30(5):979–988

    Article  Google Scholar 

  6. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169

    Article  Google Scholar 

  7. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1:285–297

    Article  Google Scholar 

  8. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  Google Scholar 

  9. Rocha I, Forster J, Nielsen J (2008) Design and application of genome-scale reconstructed metabolic models. Methods Mol Biol 416:409–431

    Article  Google Scholar 

  10. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  Google Scholar 

  11. Chuang HY, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    Article  Google Scholar 

  12. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  Google Scholar 

  13. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169

    Article  Google Scholar 

  14. Price ND, Schellenberger J, Palsson BO (2004) Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys J 87:2172–2186

    Article  Google Scholar 

  15. Lee JM, Gianchandani EP, Eddy JA, Papin JA (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4:e1000086

    Article  MathSciNet  Google Scholar 

  16. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050

    Article  Google Scholar 

  17. Jamshidi N, Palsson Bÿ (2010) Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 98:175–185

    Article  Google Scholar 

  18. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

    Article  Google Scholar 

  19. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Systs Biol 5:320

    Google Scholar 

  20. Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150

    Article  Google Scholar 

  21. Covert MW, Famili I, Palsson BO (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol Bioeng 84:763–772

    Article  Google Scholar 

  22. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Micro 2:886–897

    Article  Google Scholar 

  23. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  Google Scholar 

  24. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    Google Scholar 

  25. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    Article  Google Scholar 

  26. Oliveira A, Nielsen J, Forster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39

    Article  Google Scholar 

  27. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat protoc 5:93–121

    Article  Google Scholar 

  28. Famili I, Förster J, Nielsen J, Palsson BO (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:13134–13139

    Article  Google Scholar 

  29. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  Google Scholar 

  30. Fong SS, Palsson BO (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36:1056–1058

    Article  Google Scholar 

  31. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  Google Scholar 

  32. Burgard AP, Maranas CD (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 82:670–677

    Article  Google Scholar 

  33. Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, Galagan JE, Church GM (2009) Large-scale identification of genetic design strategies using local search. Mol Syst Biol 5:296

    Article  Google Scholar 

  34. Patil K, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6:308

    Article  Google Scholar 

  35. Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MAG (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587

    Article  Google Scholar 

  36. Brochado A, Matos C, Moller B, Hansen J, Mortensen U, Patil K (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84

    Article  Google Scholar 

  37. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  Google Scholar 

  38. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, Konig R, Smith RD, Palsson BO (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390

    Article  Google Scholar 

  39. Reed J, Vo T, Schilling C, Palsson B (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54

    Article  Google Scholar 

  40. Stephanopoulos G, Aristidou AA, Nielsen JH, Nielsen J (1998) Metabolic engineering: principles and methodologies Academic Press, San Diego

    Google Scholar 

  41. Palsson BO (2006) Systems biology: properties of reconstructed networks. Cambridge university press, Cambridge

    Book  Google Scholar 

  42. Santos F, Boele J, Teusink B (2011) Chapter twenty-four—a practical guide to genome-scale metabolic models and their analysis. In: Daniel Jameson, MV, Hans, VW (eds) Methods enzymol, vol 500. Academic Press, Burlington pp 509–532

    Google Scholar 

  43. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    Article  Google Scholar 

  44. Kim IK, Roldao A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12:228–248

    Article  Google Scholar 

  45. Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng 102:1377–1386

    Article  Google Scholar 

  46. Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5:647–659

    Article  Google Scholar 

  47. Boghigian BA, Seth G, Kiss R, Pfeifer BA (2010) Metabolic flux analysis and pharmaceutical production. Metab Eng 12:81–95

    Article  Google Scholar 

  48. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  Google Scholar 

  49. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  Google Scholar 

  50. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616

    Article  Google Scholar 

  51. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  Google Scholar 

  52. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149

    Article  Google Scholar 

  53. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Article  Google Scholar 

  54. Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. Journal Biol Chem 277:28058–28064

    Article  Google Scholar 

  55. Shlomi T, Eisenberg Y, Sharan R, Ruppin E (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3:101

    Article  Google Scholar 

  56. Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24:2229–2235

    Article  Google Scholar 

  57. Jol SJ, Kümmel A, Terzer M, Stelling J, Heinemann M (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 8:e1002415

    Article  Google Scholar 

  58. Lee K, Berthiaume F, Stephanopoulos GN, Yarmush DM, Yarmush ML (2000) Metabolic flux analysis of postburn hepatic hypermetabolism. Metab Eng 2:312–327

    Article  Google Scholar 

  59. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  Google Scholar 

  60. Reed JL, Palsson BØ (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14:1797–1805

    Article  Google Scholar 

  61. Thiele I, Fleming RMT, Bordbar A, Schellenberger J, Palsson BØ (2010) Functional characterization of alternate optimal solutions of Escherichia coli’s transcriptional and translational machinery. Biophys J 98:2072–2081

    Article  Google Scholar 

  62. Duarte N, Herrgard M, Palsson B (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  Google Scholar 

  63. Beard DA, Liang SD, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83:79–86

    Article  Google Scholar 

  64. Qian H, Beard DA (2006) Metabolic futile cycles and their functions: a systems analysis of energy and control. Syst Biol, IEE Proc 153:192–200

    Article  Google Scholar 

  65. Ibarguren I, Diaz-Enrich MJ, Cao J, Fernandez M, Barcia R, Villamarin JA, Ramos-Martinez JI (2000) Regulation of the futile cycle of fructose phosphate in sea mussel. Comp Biochem Physiol B Biochem Mol Biol 126:495–501

    Article  Google Scholar 

  66. Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci U S A 102:2310–2315

    Article  Google Scholar 

  67. Dauner M, Storni T, Sauer U (2001) Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol 183:7308–7317

    Article  Google Scholar 

  68. Tang YJ, Chakraborty R, Martín HG, Chu J, Hazen TC, Keasling JD (2007) Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-Nitrilotriacetic acid. Appl Environ Microbiol 73:3859–3864

    Article  Google Scholar 

  69. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165:477–502

    Article  Google Scholar 

  70. Holzhütter HG (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271:2905–2922

    Article  Google Scholar 

  71. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  Google Scholar 

  72. Fleming RMT, Thiele I, Provan G, Nasheuer HP (2010) Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol 264:683–692

    Article  MathSciNet  Google Scholar 

  73. Fleming RMT, Thiele I (2011) von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models. Bioinformatics 27:142–143

    Article  Google Scholar 

  74. Cogne G, Rügen M, Bockmayr A, Titica M, Dussap C-G, Cornet J-F, Legrand J (2011) A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii. Biotechnol Prog 27:631–640

    Article  Google Scholar 

  75. Noor E, Bar-Even A, Flamholz A, Lubling Y, Davidi D, Milo R (2012) An integrated open framework for thermodynamics of reactions that combines accuracy and coverage. Bioinformatics 28:2037–2044

    Article  Google Scholar 

  76. De Martino D, Figliuzzi M, De Martino A, Marinari E (2012) A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks. PLoS Comput Biol 8:e1002562

    Article  MathSciNet  Google Scholar 

  77. Beard DA, Qian H (2005) Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism. Am J Physiol Endocrinol Metab 288:E633–644

    Article  Google Scholar 

  78. Schellenberger J, Lewis NE, Palsson BO (2011) Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 100:544–553

    Article  Google Scholar 

  79. Noor E, Lewis NE, Milo R (2012) A proof for loop-law constraints in stoichiometric metabolic networks. BMC Syst Biol 6:140

    Article  Google Scholar 

  80. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604

    Article  Google Scholar 

  81. Klitgord N, Segrè D (2010) The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles. Genome Inform 22:41–55

    Article  Google Scholar 

  82. Mao L, Verwoerd WS (2013) Model-driven elucidation of the inherent capacity of Geobacter sulfurreducens for electricity generation. J Biol Eng 7:14

    Article  Google Scholar 

  83. Kelk SM, Olivier BG, Stougie L, Bruggeman FJ (2012) Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci Rep 2:580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wynand S. Verwoerd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verwoerd, W., Mao, L. (2014). The Problem of Futile Cycles in Metabolic Flux Modeling: Flux Space Characterization and Practical Approaches to Its Solution. In: Basu, S., Kumar, N. (eds) Modelling and Simulation of Diffusive Processes. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-05657-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05657-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05656-2

  • Online ISBN: 978-3-319-05657-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics