Skip to main content

A Simple Method for Measuring Lower Limb Force, Velocity and Power Capabilities During Jumping

  • Chapter
  • First Online:
Biomechanics of Training and Testing

Abstract

Lower limb ballistic movement performance (jump, sprint start, change of direction) is considered to be a key factor in many sport activities and depends directly on the mechanical capabilities of the neuromuscular system. This chapter presents the force-velocity (F-v) and power-velocity (P-v) relationships, and their associated variables of interest, as an interesting tool to evaluate the different lower limb muscle mechanical capabilities during ballistic push-off: maximal power and F-v profile. In this chapter, we will present the different laboratory and field methods to directly or indirectly assess these muscle properties, as well as their respective limits. We will also present an accurate and reliable simple field method to determine these muscle capabilities with a precision similar to that obtained with specific laboratory ergometers, while being convenient for field use because the computations only require loaded jumps (accurately standardized and performed) and three parameters rather easily measurable out of laboratory: body mass, jump height and push-off distance. The use of this simple method as routine test gives interesting information to coaches or physiotherapists: individual maximal power output and F-v profile. Validation studies, practical testing considerations and limits of this simple method will be presented. This method makes possible the follow-up of athlete muscle capabilities during a season or over several years, but also the comparison between athletes, which can help to optimize training and individualize loads and exercise modalities in strength training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A typical spreadsheet and a tutorial to use it (home-made by Morin and Samozino) can be downloaded/viewed here: https://www.researchgate.net/publication/320146284_JUMP_FVP_profile_spreadsheet

References

  • Andrews GC (1983) Biomechanical measures of muscular effort. Med Sci Sports Exerc 15(3):199–207

    CAS  PubMed  Google Scholar 

  • Argus CK, Gill ND, Keogh JW, Blazevich AJ, Hopkins WG (2011) Kinetic and training comparisons between assisted, resisted, and free countermovement jumps. J Strength Conditioning Res 25(8):2219–2227. https://doi.org/10.1519/JSC.0b013e3181f6b0f4

    Article  Google Scholar 

  • Arsac LM, Belli A, Lacour JR (1996) Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer. Eur J Appl Physiol 74(1–2):100–106

    Article  CAS  Google Scholar 

  • Asmussen E, Bonde-Petersen F (1974) Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand 91(3):385–392

    Article  CAS  PubMed  Google Scholar 

  • Avis FJ, Hoving A, Toussaint HM (1985) A dynamometer for the measurement of force, velocity, work and power during an explosive leg extension. Eur J Appl Physiol Occup Physiol 54(2):210–215

    Article  CAS  PubMed  Google Scholar 

  • Bahamonde RE (2005) Power prediction equations. Med Sci Sports Exerc 37(3):521; discussion 521-522

    Google Scholar 

  • Balsalobre-Fernandez C, Glaister M, Lockey RA (2015) The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci 33(15):1574–1579. https://doi.org/10.1080/02640414.2014.996184

    Article  PubMed  Google Scholar 

  • Bassey EJ, Short AH (1990) A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol 60(5):385–390

    Article  CAS  PubMed  Google Scholar 

  • Bobbert MF (2012) Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J Appl Physiol 112(12):1975–1983. https://doi.org/10.1152/japplphysiol.00787.2011

    Article  PubMed  Google Scholar 

  • Bosco C (1992) La valutazione della forza con il test di Bosco [Strength assessment with the Bosco’s Test]. In: Societa Sampa Sportiva, Roma, pp 56–57

    Google Scholar 

  • Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C (1995) A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol Occup Physiol 70(5):379–386

    Article  CAS  PubMed  Google Scholar 

  • Bosco C, Komi PV (1979) Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand 106(4):467–472

    Article  CAS  PubMed  Google Scholar 

  • Bosco C, Luhtanen P, Komi PV (1983) A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol 50(2):273–282

    Article  CAS  PubMed  Google Scholar 

  • Canavan PK, Vescovi JD (2004) Evaluation of power prediction equations: peak vertical jumping power in women. Med Sci Sports Exerc 36(9):1589–1593

    Article  PubMed  Google Scholar 

  • Casartelli N, Muller R, Maffiuletti NA (2010) Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J Strength Conditioning Res 24(11):3186–3193. https://doi.org/10.1519/JSC.0b013e3181d8595c

    Article  Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39(1):174–179

    Article  CAS  PubMed  Google Scholar 

  • Comstock BA, Solomon-Hill G, Flanagan SD, Earp JE, Luk HY, Dobbins KA, Dunn-Lewis C, Fragala MS, Ho JY, Hatfield DL, Vingren JL, Denegar CR, Volek JS, Kupchak BR, Maresh CM, Kraemer WJ (2011) Validity of the Myotest® in measuring force and power production in the squat and bench press. J Strength Conditioning Res 25(8):2293–2297. https://doi.org/10.1519/JSC.0b013e318200b78c

    Article  Google Scholar 

  • Corcos DM, Chen CM, Quinn NP, McAuley J, Rothwell JC (1996) Strength in Parkinson’s disease: relationship to rate of force generation and clinical status. Ann Neurol 39(1):79–88. https://doi.org/10.1002/ana.410390112

    Article  CAS  PubMed  Google Scholar 

  • Cormie P, Deane R, McBride JM (2007a) Methodological concerns for determining power output in the jump squat. J Strength Conditioning Res 21(2):424–430

    Google Scholar 

  • Cormie P, McBride JM, McCaulley GO (2007b) Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech 23(2):103–118

    Article  PubMed  Google Scholar 

  • Cormie P, McCaulley GO, McBride JM (2007c) Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc 39(6):996–1003

    Article  PubMed  Google Scholar 

  • Cormie P, McCaulley GO, Triplett NT, McBride JM (2007d) Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc 39(2):340–349

    Article  PubMed  Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2010a) Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc 42(8):1582–1598

    Article  PubMed  Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2010b) Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc 42(8):1566–1581

    Article  PubMed  Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2011a) Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med 41(1):17–38

    Article  PubMed  Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2011b) Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med 41(2):125–146

    Article  PubMed  Google Scholar 

  • Cronin J, McNair PJ, Marshall RN (2001) Velocity specificity, combination training and sport specific tasks. J Sci Med Sport 4(2):168–178

    Article  CAS  PubMed  Google Scholar 

  • Cronin JB, Hing RD, McNair PJ (2004) Reliability and validity of a linear position transducer for measuring jump performance. J Strength Conditioning Res 18(3):590–593. https://doi.org/10.1519/1533-4287(2004)18<590:RAVOAL>2.0.CO;2

    Google Scholar 

  • Cuk I, Markovic M, Nedeljkovic A, Ugarkovic D, Kukolj M, Jaric S (2014) Force-velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. Eur J Appl Physiol 114(8):1703–1714. https://doi.org/10.1007/s00421-014-2901-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies CT, Rennie R (1968) Human power output. Nature 217(5130):770–771

    Article  CAS  PubMed  Google Scholar 

  • Davies CT, Young K (1984) Effects of external loading on short term power output in children and young male adults. Eur J Appl Physiol Occup Physiol 52(3):351–354

    Google Scholar 

  • Dorel S, Couturier A, Lacour JR, Vandewalle H, Hautier C, Hug F (2010) Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Med Sci Sports Exerc 42(6):1174–1183. https://doi.org/10.1249/MSS.0b013e3181c91f35

    PubMed  Google Scholar 

  • Dorel S, Guilhem G, Couturier A, Hug F (2012) Adjustment of muscle coordination during an all-out sprint cycling task. Med Sci Sports Exerc 44(11):2154–2164. https://doi.org/10.1249/MSS.0b013e3182625423

    Article  PubMed  Google Scholar 

  • Driss T, Vandewalle H, Quièvre J, Miller C, Monod H (2001) Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. J Sports Sci 19(2):99–105

    Article  CAS  PubMed  Google Scholar 

  • Dugan EL, Doyle TLA, Humphries B, Hasson CJ, Newton RU (2004) Determining the optimal load for jump squats: a review of methods and calculations. J Strength Conditioning Res 18(3):668–674

    Google Scholar 

  • Ferretti G, Gussoni M, Di Prampero PE, Cerretelli P (1987) Effects of exercise on maximal instantaneous muscular power of humans. J Appl Physiol 62(6):2288–2294

    Article  CAS  PubMed  Google Scholar 

  • Fox EL, Mathews DK (1974) Interval training: conditioning for sports and general fitness. In: Saunders WB (eds) Philadelphia, pp 257–258

    Google Scholar 

  • Giroux C, Rabita G, Chollet D, Guilhem G (2015) What is the best method for assessing lower limb force-velocity relationship? Int J Sports Med 36(2):143–149. https://doi.org/10.1055/s-0034-1385886

    CAS  PubMed  Google Scholar 

  • Giroux C, Rabita G, Chollet D, Guilhem G (2016) Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech 32(1):59–68. https://doi.org/10.1123/jab.2015-0070

    Article  PubMed  Google Scholar 

  • Glatthorn JF, Gouge S, Nussbaumer S, Stauffacher S, Impellizzeri FM, Maffiuletti NA (2011) Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Conditioning Res 25(2):556–560. https://doi.org/10.1519/JSC.0b013e3181ccb18d

    Article  Google Scholar 

  • Gray R, Start K, Glenross D (1962) A test of leg power. Res Q 33:44–50

    Google Scholar 

  • Gülch RW (1994) Force-velocity relations in human skeletal muscle. Int J Sports Med 15(Suppl 1):S2–S10

    Article  PubMed  Google Scholar 

  • Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM (1990) The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc 22(6):825–833

    Article  CAS  PubMed  Google Scholar 

  • Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM, Kraemer WJ (1991) Estimation of human power output from vertical jump. J Appl Sport Sci Res 5(3):116–120

    Google Scholar 

  • Harris NK, Cronin JB, Hopkins WG (2007) Power outputs of a machine squat-jump across a spectrum of loads. J Strength Conditioning Res 21(4):1260–1264

    Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126B:136–195

    Article  Google Scholar 

  • Hintzy F, Belli A, Grappe F, Rouillon JD (1999) Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans. Eur J Appl Physiol Occup Physiol 79(5):426–432

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG, Schabort EJ, Hawley JA (2001) Reliability of power in physical performance tests. Sports Med 31(3):211–234

    Article  CAS  PubMed  Google Scholar 

  • James RS, Navas CA, Herrel A (2007) How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol 210(Pt 6):923–933

    Google Scholar 

  • Janssen WG, Bussmann HB, Stam HJ (2002) Determinants of the sit-to-stand movement: a review. Phys Ther 82(9):866–879

    PubMed  Google Scholar 

  • Jaric S (2015) Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med 36(9):699–704. https://doi.org/10.1055/s-0035-1547283

    Article  CAS  PubMed  Google Scholar 

  • Jaric S (2016a) Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med. https://doi.org/10.1007/s40279-016-0531-z

    PubMed  PubMed Central  Google Scholar 

  • Jaric S (2016b) Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med 46(11):1585–1589. https://doi.org/10.1007/s40279-016-0531-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaric S, Markovic G (2009) Leg muscles design: the maximum dynamic output hypothesis. Med Sci Sports Exerc 41(4):780–787

    Article  PubMed  Google Scholar 

  • Jimenez-Reyes P, Samozino P, Pareja-Blanco F, Conceicao F, Cuadrado-Penafiel V, Gonzalez-Badillo JJ, Morin JB (2016) Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int J Sports Physiol Perform. https://doi.org/10.1123/ijspp.2015-0484

    Google Scholar 

  • Johnson DL, Bahamonde R (1996) Power output estimate in university athletes. J Strength Conditioning Res 10(3):161–166

    Google Scholar 

  • Kaneko M, Fuchimoto T, Toji H, Suei K (1983) Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scand J Sports Sci 5(2):50–55

    Google Scholar 

  • Kannus P (1994) Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med 15(Suppl 1):S11–S18

    Article  PubMed  Google Scholar 

  • Kawamori N, Rossi SJ, Justice BD, Haff EE, Pistilli EE, O’Bryant HS, Stone MH, Haff GG (2006) Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Conditioning Res 20(3):483–491. https://doi.org/10.1519/18025.1

    Google Scholar 

  • Lara AJ, Abian J, Alegre LM, Jimenez L, Aguado X (2006a) Assessment of power output in jump tests for applicants to a sports sciences degree. J Sports Med Phys Fitness 46(3):419–424

    CAS  PubMed  Google Scholar 

  • Lara AJ, Alegre LM, Abian J, Jimenez L, Urena A, Aguado X (2006b) The selection of a method for estimating power output from jump performance. J Hum Mov Stud 50:399–410

    Google Scholar 

  • Lutz GJ, Rome LC (1994) Built for jumping: the design of the frog muscular system. Science 263(5145):370–372

    Google Scholar 

  • Macaluso A, De Vito G (2003) Comparison between young and older women in explosive power output and its determinants during a single leg-press action after optimisation of load. Eur J Appl Physiol 90(5–6):458–463

    Article  PubMed  Google Scholar 

  • Mak MK, Levin O, Mizrahi J, Hui-Chan CW (2003) Joint torques during sit-to-stand in healthy subjects and people with Parkinson’s disease. Clin Biomech (Bristol, Avon) 18(3):197–206. doi:S0268003302001912 [pii]

    Google Scholar 

  • Marey JE, Demeny G (1885) Locomotion humaine, mécanisme du saut. Comptes rendus des séances de l’Académies des Sciences; séance du 24 août 1885, vol 101. Institut de France, Académies des Sciences, Paris

    Google Scholar 

  • Margaria R, Aghemo P, Rovelli E (1966) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21(5):1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Markovic G, Vuk S, Jaric S (2011) Effects of jump training with negative versus positive loading on jumping mechanics. Int J Sports Med 32:1–8

    Article  Google Scholar 

  • Marsh RL (1994) Jumping ability of anuran amphibians. Adv Vet Sci Comp Med 38B:51–111

    CAS  PubMed  Google Scholar 

  • Martin JC, Wagner BM, Coyle EF (1997) Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 29(11):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • McBride JM, Triplett-McBride T, Davie A, Newton RU (2002) The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Conditioning Res 16(1):75–82

    Google Scholar 

  • McCartney N, Heigenhauser GJ, Sargeant AJ, Jones NL (1983) A constant-velocity cycle ergometer for the study of dynamic muscle function. J Appl Physiol 55(1 Pt 1):212–217

    Article  CAS  PubMed  Google Scholar 

  • McCartney N, Obminski G, Heigenhauser GJ (1985) Torque-velocity relationship in isokinetic cycling exercise. J Appl Physiol 58(5):1459–1462

    Article  CAS  PubMed  Google Scholar 

  • McMaster DT, Gill N, Cronin J, McGuigan M (2014) A brief review of strength and ballistic assessment methodologies in sport. Sports Med 44(5):603–623. https://doi.org/10.1007/s40279-014-0145-2

    Article  PubMed  Google Scholar 

  • Morin JB, Samozino P, Bonnefoy R, Edouard P, Belli A (2010) Direct measurement of power during one single sprint on treadmill. J Biomech 43(10):1970–1975

    Article  CAS  PubMed  Google Scholar 

  • Morin JB, Samozino P (2016) Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform 11(2):267–272

    Google Scholar 

  • Padulo J, Migliaccio GM, Ardigo LP, Leban B, Cosso M, Samozino P (2017) Lower limb force, velocity, power capabilities during leg press and squat movements. Int J Sports Med. http://doi.org/10.1055/s-0043-118341

  • Palmieri G, Callegari M, Fioretti S (2015) Analytical and multibody modeling for the power analysis of standing jumps. Comput Methods Biomech Biomed Engin 18(14):1564–1573. https://doi.org/10.1080/10255842.2014.930135

    Article  CAS  PubMed  Google Scholar 

  • Pearson SJ, Cobbold M, Harridge SD (2004) Power output of the lower limb during variable inertial loading: a comparison between methods using single and repeated contractions. Eur J Appl Physiol 92(1–2):176–181

    Article  CAS  PubMed  Google Scholar 

  • Rabita G, Dorel S, Slawinski J, Saez de villarreal E, Couturier A, Samozino P, Morin JB (2015) Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. doi:https://doi.org/10.1111/sms.12389

  • Rahmani A, Dalleau G, Viale F, Belli A, Lacour JR (1998) Mesure de la force dynamique par un test ballistique. Science et Sports 13:241–242

    Article  Google Scholar 

  • Rahmani A, Dalleau G, Viale F, Hautier CA, Lacour JR (2000) Validity and reliability of a kinematic device for measuring the force developed during squatting. J Appl Biomech 16:26–35

    Article  Google Scholar 

  • Rahmani A, Locatelli E, Lacour JR (2004) Differences in morphology and force/velocity relationship between Senegalese and Italian sprinters. Eur J Appl Physiol 91(4):399–405

    Article  PubMed  Google Scholar 

  • Rahmani A, Viale F, Dalleau G, Lacour JR (2001) Force/velocity and power/velocity relationships in squat exercise. Eur J Appl Physiol 84(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Riviere JR, Rossi J, Jimenez-Reyes P, Morin JB, Samozino P (2017) Where does the one-repetition maximum exist on the force-velocity relationship in squat? Int J Sports Med. http://doi.org/10.1055/s-0043-116670

  • Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB (2014) Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med 35(6):505–510. https://doi.org/10.1055/s-0033-1354382

    CAS  PubMed  Google Scholar 

  • Samozino P, Horvais N, Hintzy F (2007) Why does power output decrease at high pedaling rates during sprint cycling? Med Sci Sports Exerc 39(4):680–687

    Article  PubMed  Google Scholar 

  • Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945

    Article  PubMed  Google Scholar 

  • Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB (2012) Optimal force-velocity profile in ballistic movements. Altius: citius or fortius? Med Sci Sports Exerc 44(2):313–322

    Article  PubMed  Google Scholar 

  • Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51(5):1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Sargent LW (1924) Some observations on the Sargent test of neuromuscular efficiency. Am Phys Educ Rev 29:47–56

    Google Scholar 

  • Sayers SP, Harackiewicz DV, Harman EA, Frykman PN, Rosenstein MT (1999) Cross-validation of three jump power equations. Med Sci Sports Exerc 31(4):572–577

    Article  CAS  PubMed  Google Scholar 

  • Scholz MN, Bobbert MF, Knoek van Soest AJ (2006) Scaling and jumping: gravity loses grip on small jumpers. J Theor Biol 240(4):554–561

    Article  PubMed  Google Scholar 

  • Seck D, Vandewalle H, Decrops N, Monod H (1995) Maximal power and torque-velocity relationship on a cycle ergometer during the acceleration phase of a single all-out exercise. Eur J Appl Physiol Occup Physiol 70(2):161–168

    Article  CAS  PubMed  Google Scholar 

  • Seo DI, Kim E, Fahs CA, Rossow L, Young K, Ferguson SL, Thiebaud R, Sherk VD, Loenneke JP, Kim D, Lee MK, Choi KH, Bemben DA, Bemben MG, So WY (2012) Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med 11(2):221–225

    PubMed  PubMed Central  Google Scholar 

  • Shetty AB (2002) Estimation of leg power: a two-variable model. Sports Biomech 1(2):147–155

    Article  PubMed  Google Scholar 

  • Suzuki S, Watanabe S, Homma S (1982) EMG activity and kinematics of human cycling movements at different constant velocities. Brain Res 240(2):245–258

    Article  CAS  PubMed  Google Scholar 

  • Thorstensson A, Grimby G, Karlsson J (1976) Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 40(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Van Soest AJ, Bobbert MF, Van Ingen Schenau GJ (1994) A control strategy for the execution of explosive movements from varying starting positions. J Neurophysiol 71(4):1390–1402

    Article  PubMed  Google Scholar 

  • van Soest O, Casius LJ (2000) Which factors determine the optimal pedaling rate in sprint cycling? Med Sci Sports Exerc 32(11):1927–1934

    Article  PubMed  Google Scholar 

  • Vandewalle H, Peres G, Heller J, Panel J, Monod H (1987a) Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump. Eur J Appl Physiol Occup Physiol 56(6):650–656

    Google Scholar 

  • Vandewalle H, Peres G, Monod H (1987b) Standard anaerobic exercise tests. Sports Med 4(4):268–289

    Article  CAS  PubMed  Google Scholar 

  • Verdijk LB, van Loon L, Meijer K, Savelberg HH (2009) One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J Sports Sci 27(1):59–68. https://doi.org/10.1080/02640410802428089

    Article  PubMed  Google Scholar 

  • Wilson GJ, Walshe AD, Fisher MR (1997) The development of an isokinetic squat device: reliability and relationship to functional performance. Eur J Appl Physiol Occup Physiol 75(5):455–461

    Article  CAS  PubMed  Google Scholar 

  • Wright GA, Pustina AA, Mikat RP, Kernozek TW (2012) Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women. J Strength Conditioning Res 26(3):648–655. https://doi.org/10.1519/JSC.0b013e3182443125

    Article  Google Scholar 

  • Yamauchi J, Ishii N (2007) Relations between force-velocity characteristics of the knee-hip extension movement and vertical jump performance. J Strength Conditioning Res 21(3):703–709

    Google Scholar 

  • Yamauchi J, Mishima C, Fujiwara M, Nakayama S, Ishii N (2007) Steady-state force-velocity relation in human multi-joint movement determined with force clamp analysis. J Biomech 40(7):1433–1442

    Article  PubMed  Google Scholar 

  • Yamauchi J, Mishima C, Nakayama S, Ishii N (2005) Torque-velocity relation of pedaling movement against stepwise increase in load. Int J Sport Health Sci 3:110–115

    Article  Google Scholar 

  • Zamparo P, Antonutto G, Capelli C, di Prampero PE (2000) Effects of different after-loads and knee angles on maximal explosive power of the lower limbs in humans. Eur J Appl Physiol 82(5–6):381–390

    Article  CAS  PubMed  Google Scholar 

  • Zamparo P, Antonutto G, Capelli C, Girardis M, Sepulcri L, di Prampero PE (1997) Effects of elastic recoil on maximal explosive power of the lower limbs. Eur J Appl Physiol Occup Physiol 75(4):289–297

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Samozino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samozino, P. (2018). A Simple Method for Measuring Lower Limb Force, Velocity and Power Capabilities During Jumping. In: Morin, JB., Samozino, P. (eds) Biomechanics of Training and Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-05633-3_4

Download citation

Publish with us

Policies and ethics