Skip to main content

The Measurement of Sprint Mechanics Using Instrumented Treadmills

  • Chapter
  • First Online:
Biomechanics of Training and Testing

Abstract

Since sprinting involves very fast movement velocities (up to 12 m/s in the best athletes), experimental studies in this field have always been a technical challenge. Whilst sprint kinematics and distance-time or velocity-time variables were first described by the end of the 19th century, kinetics and especially ground reaction force and mechanical power outputs have remained unexplored until the 1970s and 1980s. Cutting edge laboratory installations now allow for full-length sprint acceleration studies (single or multiple sprint protocols) with track-embedded force plates. However, a significant amount of literature and knowledge has been previously established by the use of instrumented treadmills. These were first non-motorized and not directly measuring the ground reaction force (end of the 1980s), but the most up-to-date device allows investigation of sprint mechanics and three-dimensional ground reaction force during an accelerated run (from zero to maximal velocity). In this chapter, we will present the historical development of these devices, along with their advantages and limitations, and the main experimental results obtained with the motorized accelerated treadmill. In particular, we will present the key concept of mechanical effectiveness of ground force application, and how it is related to sprint performance. Furthermore, we will discuss the muscular underpinnings of the mechanical effectiveness; specifically the role of hip extensors. Finally, we will discuss the comparison between treadmill and track sprint performance and mechanics, including data from elite sprinters, and how current and future research on this topic will allow a deeper understanding of this seemingly simple yet complex motor task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See this video of a typical sprint acceleration on this treadmill: https://www.youtube.com/watch?v=NkGNOPSIJus.

  2. 2.

    See this comment on Usain Bolt’s running mechanics: https://phys.org/news/2017-06-symmetry-usain-asymmetrical-gait.html.

References

  • Avogadro P, Chaux C, Bourdin M et al (2004) The use of treadmill ergometers for extensive calculation of external work and leg stiffness during running. Eur J Appl Physiol 92:182–185

    Article  PubMed  Google Scholar 

  • Bassett DR (2002) Scientific contributions of A. V. Hill: exercise physiology pioneer. J Appl Physiol 93:1567–1582

    Article  PubMed  Google Scholar 

  • Belli A, Bui P, Berger A et al (2001) A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. J Biomech 34:105–112

    Article  CAS  PubMed  Google Scholar 

  • Belli A, Kyröläinen H, Komi PV (2002) Moment and power of lower limb joints in running. Int J Sports Med 23:136–141

    Article  CAS  PubMed  Google Scholar 

  • Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Bowtell MV, Tan H, Wilson AM (2009) The consistency of maximum running speed measurements in humans using a feedback-controlled treadmill, and a comparison with maximum attainable speed during overground locomotion. J Biomech 42:2569–2574

    Article  PubMed  Google Scholar 

  • Brocherie F, Millet GP, Morin J-B, Girard O (2016) Mechanical alterations to repeated treadmill sprints in normobaric hypoxia. Med Sci Sport Exerc 48:1570–1579

    Article  Google Scholar 

  • Brown SR, Brughelli M (2014) Determining return-to-sport status with a multi-component assessment strategy: a case study in rugby. Phys Ther Sport 15:211–215

    Article  PubMed  Google Scholar 

  • Brown SR, Brughelli M, Cross MR (2016) Profiling sprint mechanics by leg preference and position in rugby union athletes. Int J Sports Med 37:890–897

    Article  CAS  PubMed  Google Scholar 

  • Brown SR, Cross MR, Girard O et al (2017) Kinetic sprint asymmetries on a non-motorised treadmill in rugby union athletes. Int J Sport Med (In press)

    Google Scholar 

  • Brughelli M, Cronin J, Chaouachi A (2011) Effects of running velocity on running kinetics and kinematics. J Strength Cond Res 25:933–939

    Article  PubMed  Google Scholar 

  • Brughelli M, Morin J-B, Mendiguchia J (2015) Asymmetry after hamstring injury in English Premier League: issue resolved, or perhaps not? Int J Sports Med 36:603

    Article  CAS  PubMed  Google Scholar 

  • Bundle MW, Hoyt RW, Weyand PG (2003) High-speed running performance: a new approach to assessment and prediction. J Appl Physiol 95:1955–1962

    Article  PubMed  Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179

    Article  CAS  PubMed  Google Scholar 

  • Cavagna GA, Komarek L, Mazzoleni S (1971) The mechanics of sprint running. J Physiol 217:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheetham ME, Williams C, Lakomy HK (1985) A laboratory running test: metabolic responses of sprint and endurance trained athletes. Br J Sports Med 19:81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelly SM, Denis C (2001) Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 33:326–333

    Article  CAS  PubMed  Google Scholar 

  • Clark KP, Ryan LJ, Weyand PG (2016) A general relationship links gait mechanics and running ground reaction forces. J Exp Biol (jeb.138057)

    Google Scholar 

  • Clark KP, Ryan LJ, Weyand PG (2017) A general relationship links gait mechanics and running ground reaction forces. J Exp Biol 220:247–258

    Article  PubMed  Google Scholar 

  • Clark KP, Weyand PG (2014) Are running speeds maximized with simple-spring stance mechanics? J Appl Physiol 117:604–615

    Article  PubMed  Google Scholar 

  • Cross MR, Brughelli ME, Cronin JB (2014) Effects of vest loading on sprint kinetics and kinematics. J Strength Cond Res 28:1867–1874

    Article  PubMed  Google Scholar 

  • Dal Monte A, Fucci S, Manoni A (1973) The treadmill used as a training and simulator instrument in middle- and long-distance running. In: Krager (ed) Medicine and sport, Basel, pp 359–363

    Google Scholar 

  • Davis RR, Hull ML (1981) Measurement of pedal loading in bicycling: II. Analysis and results. J Biomech 14:857–872

    Article  CAS  PubMed  Google Scholar 

  • Divert C, Mornieux G, Baur H et al (2005) Mechanical comparison of barefoot and shod running. Int J Sports Med 26:593–598

    Article  CAS  PubMed  Google Scholar 

  • Dorel S, Couturier A, Lacour JR et al (2010) Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Med Sci Sports Exerc 42:1174–1183

    PubMed  Google Scholar 

  • Dorn TW, Schache AG, Pandy MG (2012) Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol 215:1944–1956

    Article  PubMed  Google Scholar 

  • Ekstrand J, Hägglund M, Walden M (2011) Epidemiology of muscle injuries in professional football (Soccer). Am J Sports Med 39:1–7

    Article  Google Scholar 

  • Elliott BC, Blanksby BA (1976) A cinematographic analysis of overground and treadmill running by males and females. Med Sci Sport Exerc 8:84–87

    Article  CAS  Google Scholar 

  • Falk B, Weinstein Y, Dotan R et al (1996) A treadmill test of sprint running. Scand J Med Sci Sports 6:259–264

    Article  CAS  PubMed  Google Scholar 

  • Feddermann-Demont N, Junge A, Edouard P et al (2014) Injuries in 13 international Athletics championships between 2007-2012. Br J Sports Med 48:513–522

    Article  PubMed  Google Scholar 

  • Frishberg BA (1983) An analysis of overground and treadmill sprinting. Med Sci Sports Exerc 15:478–485

    Article  CAS  PubMed  Google Scholar 

  • Funato K, Yanagiya T, Fukunaga T (2001) Ergometry for estimation of mechanical power output in sprinting in humans using a newly developed self-driven treadmill. Eur J Appl Physiol 84:169–173

    Article  CAS  PubMed  Google Scholar 

  • Furusawa K, Hill AV, Parkinson JL (1927) The dynamics of “Sprint” running. Proc R Soc B Biol Sci 102:29–42

    Article  Google Scholar 

  • Girard O, Brocherie F, Morin J-B et al (2015a) Comparison of four sections for analyzing running mechanics alterations during repeated treadmill sprints. J Appl Biomech 31:389–395

    Article  PubMed  Google Scholar 

  • Girard O, Brocherie F, Morin J-B et al (2017a) Mechanical alterations associated with repeated treadmill sprinting under heat stress. PLoS ONE 12:e0170679

    Article  PubMed  PubMed Central  Google Scholar 

  • Girard O, Brocherie F, Morin J-B, Millet GP (2016a) Intrasession and intersession reliability of running mechanics during treadmill sprints. Int J Sports Physiol Perform 11:432–439

    Article  PubMed  Google Scholar 

  • Girard O, Brocherie F, Morin J-B, Millet GP (2017b) Mechanical alterations during interval-training treadmill runs in high-level male team-sport players. J Sci Med Sport 20:87–91

    Article  PubMed  Google Scholar 

  • Girard O, Brocherie F, Morin J-B, Millet GP (2016b) Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study. J Sports Sci 34:1190–1198

    Article  PubMed  Google Scholar 

  • Girard O, Brocherie F, Morin J-B, Millet GP (2015b) Neuro-mechanical determinants of repeated treadmill sprints—usefulness of an “hypoxic to normoxic recovery” approach. Front Physiol 6:260

    PubMed  PubMed Central  Google Scholar 

  • Girard O, Brocherie F, Morin J-B, Millet GP (2017c) Lower limb mechanical asymmetry during repeated treadmill sprints. Hum Mov Sci 52:203–214

    Article  PubMed  Google Scholar 

  • Girard O, Brocherie F, Tomazin K et al (2016c) Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints. J Biomech 49:1490–1497

    Article  CAS  PubMed  Google Scholar 

  • Jaskolska A, Goossens P, Veentra B et al (1998) Treadmill measurement of the force-velocity relationship and power output in subjects with different maximal running velocities. Sports Med 8:347–358

    Google Scholar 

  • Kivi DMR, Maraj BKV, Gervais P (2002) A kinematic analysis of high-speed treadmill sprinting over a range of velocities. Med Sci Sports Exerc 34:662–666

    PubMed  Google Scholar 

  • Kram R, Griffin TM, Donelan JM, Chang YH (1998) Force treadmill for measuring vertical and horizontal ground reaction forces. J Appl Physiol 85:764–769

    Article  CAS  PubMed  Google Scholar 

  • Kram R, Powell AJ (1989) A treadmill-mounted force platform. J Appl Physiol 67:1692–1698

    Article  CAS  PubMed  Google Scholar 

  • Kyröläinen H, Avela J, Komi PV (2005) Changes in muscle activity with increasing running speed. J Sports Sci 23:1101–1109

    Article  PubMed  Google Scholar 

  • Lakomy HKA (1987) The use of a non-motorized treadmill for analysing sprint performance. Ergonomics 30:627–637

    Article  Google Scholar 

  • Mann R, Sprague P (1980) A kinetic analysis of the ground leg during sprint running. Res Q Exerc Sport 51:334–348

    Article  CAS  PubMed  Google Scholar 

  • Marey EJ (2002) Le mouvement, Editions J. Chambon

    Google Scholar 

  • McKenna M, Riches PE (2007) A comparison of sprinting kinematics on two types of treadmill and over-ground. Scand J Med Sci Sport 17:649–655

    Article  CAS  Google Scholar 

  • Morin J-B, Petrakos G, Jimenez-Reyes P et al (2016) Very-heavy sled training for improving horizontal force output in soccer players. Int J Sports Physiol Perform 1–13

    Google Scholar 

  • Morin J-B, Belli A (2004) A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer. J Biomech 37:141–145

    Article  PubMed  Google Scholar 

  • Morin J-B, Bourdin M, Edouard P et al (2012) Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol 112:3921–3930

    Article  PubMed  Google Scholar 

  • Morin J-B, Edouard P, Samozino P (2011a) Technical ability of force application as a determinant factor of sprint performance. Med Sci Sport Exerc 43:1680–1688

    Article  Google Scholar 

  • Morin J-B, Gimenez P, Edouard P et al (2015a) Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol 6:e404

    Article  Google Scholar 

  • Morin JB, Samozino P, Bonnefoy R et al (2010) Direct measurement of power during one single sprint on treadmill. J Biomech 43:1970–1975. https://doi.org/10.1016/j.jbiomech.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  • Morin J-B, Samozino P, Edouard P, Tomazin K (2011b) Effect of fatigue on force production and force application technique during repeated sprints. J Biomech 44:2719–2723

    Article  PubMed  Google Scholar 

  • Morin J-B, Samozino P, Millet GY (2011c) Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Med Sci Sports Exerc 43:829–836

    Article  PubMed  Google Scholar 

  • Morin J-B, Samozino P, Zameziati K, Belli A (2007) Effects of altered stride frequency and contact time on leg-spring behavior in human running. J Biomech 40:3341–3348

    Article  CAS  PubMed  Google Scholar 

  • Morin J-B, Sève P (2011) Sprint running performance: comparison between treadmill and field conditions. Eur J Appl Physiol 111:1695–1703

    Article  PubMed  Google Scholar 

  • Morin J-B, Slawinski J, Dorel S et al (2015b) Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech 48:3149–3154

    Article  PubMed  Google Scholar 

  • Nagahara R, Mizutani M, Matsuo A et al (2017) Association of step width with accelerated sprinting performance and ground reaction force. Int J Sports Med 38:534–540

    Article  PubMed  Google Scholar 

  • Nelson RC, Dillman CJ, Lagasse P, Bickett P (1972) Biomechanics of overground versus treadmill running. Med Sci Sports 4:233–240

    CAS  PubMed  Google Scholar 

  • Nigg BM, De Boer RW, Fisher V (1995) A kinematic comparison of overground and treadmill running. Med Sci Sports Exerc 27:98–105

    CAS  PubMed  Google Scholar 

  • Rabita G, Dorel S, Slawinski J et al (2015) Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports 25:583–594

    Article  CAS  PubMed  Google Scholar 

  • Riley PO, Dicharry J, Franz J et al (2008) A kinematics and kinetic comparison of overground and treadmill running. Med Sci Sports Exerc 40:1093–1100

    Article  PubMed  Google Scholar 

  • Schache AG, Blanch PD, Rath DA et al (2001) A comparison of overground and treadmill running for measuring the three-dimensional kinematics of the lumbo-pelvic-hip complex. Clin Biomech 16:667–680

    Article  CAS  Google Scholar 

  • Schache AG, Brown NAT, Pandy MG (2015) Modulation of work and power by the human lower-limb joints with increasing steady-state locomotion speed. J Exp Biol 218:2472–2481

    Article  PubMed  Google Scholar 

  • Schache AG, Dorn TW, Williams GP et al (2014) Lower-limb muscular strategies for increasing running speed. J Orthop Sport Phys Ther 44:813–824

    Article  Google Scholar 

  • Simonsen EB, Thomsen L, Klausen K (1985) Activity of mono- and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol 54:524–532

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wei S, Zhong Y et al (2015) How joint torques affect hamstring injury risk in sprinting swing-stance transition. Med Sci Sports Exerc 47:373–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomazin K, Morin J-B, Strojnik V et al (2012) Fatigue after short (100-m), medium (200-m) and long (400-m) treadmill sprints. Eur J Appl Physiol 112:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • van Ingen Schenau GJ (1980) Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med Sci Sports Exerc 12:257–261

    PubMed  Google Scholar 

  • Weyand PG, Sandell RF, Prime DNL, Bundle MW (2010) The biological limits to running speed are imposed from the ground up. J Appl Physiol 108:950–961

    Article  PubMed  Google Scholar 

  • Weyand PG, Sternlight DB, Bellizzi MJ, Wright S (2000) Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol 89:1991–1999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoit Morin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morin, JB., Brown, S.R., Cross, M.R. (2018). The Measurement of Sprint Mechanics Using Instrumented Treadmills. In: Morin, JB., Samozino, P. (eds) Biomechanics of Training and Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-05633-3_10

Download citation

Publish with us

Policies and ethics