Skip to main content

Rough Sets for Insilico Identification of Differentially Expressed miRNAs

  • Chapter
  • First Online:
Scalable Pattern Recognition Algorithms
  • 1403 Accesses

Abstract

The microRNAs or miRNAs regulate expression of a gene or protein. It has been observed that they play an important role in various cellular processes and thus help in carrying out normal functioning of a cell. However, dysregulation of miRNAs is found to be a major cause of a disease. Various studies have also shown the role of miRNAs in cancer and utility of miRNAs for the diagnosis of cancer. In this regard, this chapter presents a new approach for selecting miRNAs from microarray expression data. It integrates the merit of rough set-based feature selection algorithm reported in Chap. 4 and theory of B.632+ bootstrap error rate. The effectiveness of the new approach, along with a comparison with other algorithms, is demonstrated on several miRNA data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Nat Acad Sci USA 99(10):6562–6566

    Article  MATH  Google Scholar 

  2. Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JTD, Dhruv H, Foss KM, Sibenaller Z, Ryken T, Gotway MB, Kim S, Weiss GJ (2011) MicroRNA-328 is associated with non-small cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 129(11):2621–2631

    Article  Google Scholar 

  3. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavare S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):214.1–214.16

    Google Scholar 

  4. Budhu A, Ji J, Wang XW (2010) The clinical potential of microRNAs. J Hematol Oncol 3(37):1–7

    Google Scholar 

  5. Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67:976–983

    Article  Google Scholar 

  6. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205

    Article  MathSciNet  Google Scholar 

  7. Efron B, Tibshirani R (1997) Improvements on cross-validation: the. 632+ bootstrap method. J Am Stat Assoc 92(438):548–560

    MATH  MathSciNet  Google Scholar 

  8. Fang J, Busse JWG (2006) Mining of microRNA expression data - a rough set approach. In: Proceedings of the 1st international conference on rough sets and knowledge technology, Springer, Berlin, pp 758–765

    Google Scholar 

  9. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657

    Article  Google Scholar 

  10. Iorio MV, Visone R, Leva GD, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707

    Article  Google Scholar 

  11. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP, Ruprecht K, Meese E (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS ONE 4(10):e7440

    Article  Google Scholar 

  12. Keller A, Leidinger P, Wendschlag A, Scheffler M, Meese E, Wucherpfennig F, Huwer H, Borries A (2009) miRNAs in lung cancer—studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer 9:353

    Article  Google Scholar 

  13. Klir G, Yuan B (2005) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, New Delhi, India

    Google Scholar 

  14. Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, Schipper E, Hille U, Kreipe HH, Langer F (2010) Identification of differentially expressed microRNAs in human male breast cancer. BMC Bioinformatics 10:1–9

    Google Scholar 

  15. Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY (2009) Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 50:1756–1765

    Article  Google Scholar 

  16. Lu J, Getz G, Miska EA, Saavedra EA, Lamb J, Peck D, Cordero AS, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nat Lett 435(9):834–838

    Article  Google Scholar 

  17. Maji P (2009) \(f\)-Information measures for efficient selection of discriminative genes from microarray data. IEEE Trans Biomed Eng 56(4):1063–1069

    Article  MathSciNet  Google Scholar 

  18. Maji P (2011) Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data. IEEE Trans Syst Man Cybern Part B Cybern 41(1):222–233

    Article  Google Scholar 

  19. Maji P, Das C (2012) Relevant and significant supervised gene clusters for microarray cancer classification. IEEE Trans NanoBiosci 11(2):161–168

    Article  Google Scholar 

  20. Maji P, Pal SK (2010) Feature selection using \(f\)-information measures in fuzzy approximation spaces. IEEE Trans Knowl Data Eng 22(6):854–867

    Article  Google Scholar 

  21. Maji P, Pal SK (2010) Fuzzy-rough sets for information measures and selection of relevant genes from microarray data. IEEE Trans Syst Man Cybern Part B Cybern 40(3):741–752

    Article  Google Scholar 

  22. Maji P, Pal SK (2012) Rough-fuzzy pattern recognition: applications in bioinformatics and medical imaging. Wiley-IEEE Computer Society Press, New Jersey

    Google Scholar 

  23. Maji P, Paul S (2011) Microarray time-series data clustering using rough-fuzzy c-means algorithm. In: Proceedings of the 5th IEEE international conference on bioinformatics and biomedicine, Atlanta, pp 269–272

    Google Scholar 

  24. Maji P, Paul S (2011) Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approximate Reasoning 52(3):408–426

    Article  Google Scholar 

  25. Maji P, Paul S (2013) Rough-fuzzy clustering for grouping functionally similar genes from microarray data. IEEE/ACM Trans Comput Biol Bioinf 10(2):286–299

    Article  Google Scholar 

  26. McIver AD, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Lister TA, Young BD, Debernardi S (2008) Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE 3(5):1–8

    Google Scholar 

  27. Nasser S, Ranade AR, Sridhart S, Haney L, Korn RL, Gotway MB, Weiss GJ, Kim S (2009) Identifying miRNA and imaging features associated with metastasis of lung cancer to the brain. In: Proceedings of IEEE international conference on bioinformatics and biomedicine, pp 246–251

    Google Scholar 

  28. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Real JMF (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 5(2):1–9

    Article  Google Scholar 

  29. Pal SK, Mitra S (1999) Neuro-fuzzy pattern recognition: methods in soft computing. Wiley, New York

    Google Scholar 

  30. Pal SK, Pramanik PK (1986) Fuzzy measures in determining seed points in clustering. Pattern Recogn Lett 4(3):159–164

    Article  Google Scholar 

  31. Paul S, Maji P (2012) Robust RFCM algorithm for identification of co-expressed miRNAs. In: Proceedings of IEEE international conference on bioinformatics and biomedicine, Philadelphia, pp 520–523

    Google Scholar 

  32. Paul S, Maji P (2012) Rough sets and support vector machine for selecting differentially expressed miRNAs. In: Proceedings of IEEE international conference on bioinformatics and biomedicine workshops: nanoinformatics for biomedicine, Philadelphia, pp 864–871

    Google Scholar 

  33. Paul S, Maji P (2013) \(\mu \)HEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix. BMC Bioinformatics 14(1):266

    Article  MathSciNet  Google Scholar 

  34. Paul S, Maji P (2013) Rough sets for insilico identification of differentially expressed miRNAs. Int J Nanomed 8:63–74

    Google Scholar 

  35. Pawlak Z (1991) Rough sets: theoretical aspects of resoning about data. Kluwer, Dordrecht

    Google Scholar 

  36. Pereira PM, Marques JP, Soares AR, Carreto L, Santos MAS (2010) MicroRNA expression variability in human cervical tissues. PLoS ONE 5(7):1–12

    Article  Google Scholar 

  37. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG (2009) MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 69(14):5776–5783

    Article  Google Scholar 

  38. Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, Bayer CM, Bani MR, Richter S, Adamietz BR, Wenkel E, Rauh C, Beckmann MW, Fasching PA (2012) Circulating microRNAs as potential blood-based markers for early stage breast cancer detection. PLoS ONE 7(1):1–9

    Article  Google Scholar 

  39. Slezak D, Wroblewski J (2007) Roughfication of numeric decision tables: the case study of gene expression data. In: Proceedings of the 2nd international conference on rough sets and knowledge technology, Springer, Berlin, pp 316–323

    Google Scholar 

  40. Valdes JJ, Barton AJ (2006) Relevant attribute discovery in high dimensional data: application to breast cancer gene expressions. In: Proceedings of the 1st international conference on rough sets and knowledge technology, Springer, Berlin, pp 482–489

    Google Scholar 

  41. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  42. Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q (2011) Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS ONE 6(10):1–11

    Google Scholar 

  43. Xu R, Xu J, Wunsch DC (2009) MicroRNA expression profile based cancer classification using default ARTMAP. Neural Netw 22:774–780

    Article  Google Scholar 

  44. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE 5(10):1–12

    Google Scholar 

  46. Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, Stephens RM, Green JE (2011) Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 12:1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Maji .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maji, P., Paul, S. (2014). Rough Sets for Insilico Identification of Differentially Expressed miRNAs. In: Scalable Pattern Recognition Algorithms. Springer, Cham. https://doi.org/10.1007/978-3-319-05630-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05630-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05629-6

  • Online ISBN: 978-3-319-05630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics