Skip to main content

Fundamentals of Nanoparticle Flow and Heat Transfer

  • Chapter
  • First Online:
Nanofluidics

Abstract

Nanofluids are suspensions of nano-size particles (typically 2–100 nm) in liquids, which are called base fluids. Several research projects of the late 1990s and the first decade of the twenty-first century indicated that the addition of very small amounts of nanoparticles in commonly used base fluids, such as water and ethyl glycol, increased significantly the effective thermal conductivity of these mixtures. Choi et al. (Appl Phys Lett 79:2252–2254, 2001) used a dilute suspension of carbon nanotubes in water and observed that the conductivity of the resulting nanofluid more than doubled. Some experiments on the mass transfer coefficients with nanofluids reported more dramatic results: Olle et al. (Ind Eng Chem Res 45(12):4355–4363, 2006) detected mass transfer enhancements with ferromagnetic nanoparticle suspensions as high as six times the corresponding coefficients of the base fluid alone. The significantly enhanced transport properties of the nanofluids brand these suspensions as ideal media for heat and mass transfer with widespread applications including the cooling of very small electronic components, which will comprise the next generation of computer chips; absorption of gases by liquid carriers; increase of the rate of gas–liquid chemical reactions; electricity generation; cooling of smaller internal combustion engines; space applications under microgravity; advanced nuclear reactor cooling; and biomedicine.

All the available experimental data point to the fact that the rates of heat and mass transfer in base fluids are significantly enhanced with the addition of 1–2 % of nanoparticles by volume. This characteristic will establish certain types of nanofluids as the heat and mass transfer media for the future, with an enormous economic potential. Because of this, a significant amount of research was conducted during the first decade of the twenty-first century on the transport properties and the applications of nanofluids, hundreds of journal articles were written, and several conferences were devoted to the subject.

This chapter presents the fundamentals of the flow and heat and mass transfer processes of nanoparticles in liquids. The chapter starts with useful definitions for particles and suspensions that assist with the exposition of the subject. The time scales and length scales for the nanofluid suspensions and the individual particles are derived, and dimensionless numbers that are pertinent to the nanofluids are presented. A short section explains the meaning of the limit mathematical operation within the molecular model of matter and the analytical complexities introduced by the small size of the nanoparticles in a continuum model of matter. The fundamental equation of motion for a nanoparticle in a fluid is derived, in the presence of velocity slip at the interface, and closure equations for the interfacial slip are presented. The hydrodynamic force on the nanoparticles is derived, for both steady and transient flows. Expressions for the rates of heat and mass transfer for nanoparticles with both velocity and temperature discontinuities at the interface are also derived and presented for steady and transient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to avoid confusion with the differential operator, d, the expression 2α will be preferentially used in this monograph to denote the diameter, rather than the symbol d.

  2. 2.

    Basset originally used the stipulation v θ  =  . The form of the closure equation that has been used by most subsequent researchers is also used here.

  3. 3.

    For incompressible substances such as solids and liquids, the specific heats at constant pressure and constant volume are approximately equal and are denoted simply by the symbol c, c p  = c v  = c.

References

  • Abramzon, B., & Elata, C. (1984). Heat transfer from a single sphere in stokes flow. International Journal of Heat and Mass Transfer, 27, 687–695.

    Google Scholar 

  • Acrivos, A. (1980). A note on the rate of heat or mass transfer from a small particle freely suspended in linear shear field. Journal of Fluid Mechanics, 98, 299–304.

    MATH  MathSciNet  Google Scholar 

  • Acrivos, A., & Taylor, T. E. (1962). Heat and mass transfer from single spheres in stokes flow. Physics of Fluids, 5, 387–394.

    MATH  MathSciNet  Google Scholar 

  • Allen, M. D., & Raabe, O. G. (1982). Re-evaluation of Millikan’s oil drop data for the motion of small particles in air. Journal of Aerosol Science, 13, 537–546.

    Google Scholar 

  • Allen, M. D., & Raabe, O. G. (1985). Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Science and Technology, 4, 269–282.

    Google Scholar 

  • Balachandar, S., & Ha, M. Y. (2001). Unsteady heat transfer from a sphere in a uniform cross-flow. Physics of Fluids, 13(12), 3714–3728.

    Google Scholar 

  • Barber, R. W., & Emerson, D. R. (2006). Challenges in modeling gas-phase flow in microchannels: From slip to transition. Heat Transfer Engineering, 27, 3–12.

    Google Scholar 

  • Basset, A. B. (1888a). Treatise on hydrodynamics. London: Bell.

    MATH  Google Scholar 

  • Basset, A. B. (1888b). On the motion of a sphere in a viscous liquid. Philosophical Transactions of the Royal Society of London, 179, 43–63.

    MATH  Google Scholar 

  • Berg, J. C. (2010). An introduction to interfaces and colloids—the bridge to nanoscience. Hackensack, NJ: World Scientific.

    Google Scholar 

  • Boussinesq, V. J. (1885). Sur la resistance qu’ oppose un liquide indéfini en repos. Comptes Rendus de l'Académie des Sciences Paris, 100, 935–937.

    MATH  Google Scholar 

  • Brenner, H., & Cox, R. G. (1963). The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. Journal of Fluid Mechanics, 17, 561–595.

    MATH  MathSciNet  Google Scholar 

  • Brun, P. O. (1982). Heat or mass transfer from single spheres in a low Reynolds number flow. The International Journal of Engineering Science, 20, 817–822.

    Google Scholar 

  • Bushell, G. C., Yan, Y. D., Woodfield, D., Raper, J., & Amal, R. (2002). On techniques for the measurement of the mass fractal dimension of aggregates. Advances in Colloid and Interface Science, 95(1), 1–50.

    Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1947). Conduction of heat in solids. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Chhabra, R. P., Singh, T., & Nandrajog, S. (1995). Drag on chains and agglomerates of spheres in viscous Newtonian and power law fluids. The Canadian Journal of Chemical Engineering, 73, 566–571.

    Google Scholar 

  • Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254.

    Google Scholar 

  • Ciccotti, G., & Hoover, W. G. (Eds.). (1986). Molecular-dynamics simulation of statistical-mechanical systems (Proceedings of the International School of Physics “Enrico Fermi” Varenna, 1985, Vol. 97). Amsterdam: North-Holland Elsevier Science Publisher.

    Google Scholar 

  • Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. New York: Academic.

    Google Scholar 

  • Crowe, C. T., Babcock, W. R., Willoughby, P. G., & Carlson, R. L. (1969). Measurement of particle drag coefficients in flow regimes encountered by particles in a rocket nozzle. United Technology Report, 2296-FR.

    Google Scholar 

  • Crowe, C. T., Sommerfeld, M., & Tsuji, Y. (1998). Multiphase flows with droplets and particles. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cunningham, E. (1910). On the velocity of steady fall of spherical particles through a fluid medium. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 83, 357–364.

    MATH  Google Scholar 

  • Dandy, D. S., & Dwyer, H. A. (1990). A sphere in shear flow at finite Reynolds number: Effect of particle lift, drag and heat transfer. Journal of Fluid Mechanics, 218, 381–412.

    Google Scholar 

  • Din, X. D., & Michaelides, E. E. (1997). Calculation of long-range interactions in molecular dynamics and Monte-Carlo simulations. Journal of Physical Chemistry A, 101, 4322–4329.

    Google Scholar 

  • Din, X. D., & Michaelides, E. E. (1998). Transport processes of water and protons through micro-pores. AIChE Journal, 44, 35–44.

    Google Scholar 

  • Douglas, W. J. M., & Churchill, S. W. (1956). Heat and mass transfer correlations for irregular particles. Chemical Engineering Progress Symposium Series, 52(18), 23–28.

    Google Scholar 

  • Duck, S. M. (2006). The equation of motion of a nano-scale solid sphere with interfacial slip. MS Thesis, Tulane University.

    Google Scholar 

  • Epstein, P. S. (1924). On the resistance experienced by spheres in their motion through gasses. Physics Review, 23, 710–733.

    Google Scholar 

  • Evans, D. J., Morriss, G. P., & Hood, L. M. (1989). On the number dependence of viscosity in three dimensional fluids. Molecular Physics, 68, 637.

    Google Scholar 

  • Faxen, H. (1922). Der Widerstand gegen die Bewegung einer starren Kugel in einer zum den Flussigkeit, die zwischen zwei parallelen Ebenen Winden eingeschlossen ist. Annalen der Physik, 68, 89–119.

    Google Scholar 

  • Feng, Z. G. (2010). A correlation of the drag force coefficient on a sphere with interface slip at low and intermediate Reynolds numbers. Journal of Dispersion Science and Technology, 31, 968–974.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (1998a). Motion of a permeable sphere at finite but small Reynolds numbers. Physics of Fluids, 10, 1375–1383.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (1998b). Transient heat transfer from a particle with arbitrary shape and motion. Journal of Heat Transfer, 120, 674–681.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2000a). A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers. International Journal of Heat and Mass Transfer, 43, 219–229.

    MATH  Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2000b). Mass and heat transfer from fluid spheres at low Reynolds numbers. Powder Technology, 112, 63–69.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2001a). Drag coefficients of viscous spheres at intermediate and high Reynolds numbers. Journal of Fluids Engineering, 123, 841–849.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2001b). Heat and mass transfer coefficients of viscous spheres. International Journal of Heat and Mass Transfer, 44, 4445–4454.

    MATH  Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2002). Inter-particle forces and lift on a particle attached to a solid boundary in suspension flow. Physics of Fluids, 14, 49–60.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2003). Equilibrium position for a particle in a horizontal shear flow. International Journal of Multiphase Flow, 29, 943–957.

    MATH  Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2008). Inclusion of heat transfer computations for particle laden flows. Physics of Fluids, 20, 1–10.

    MATH  Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2009). Heat transfer in particulate flows with Direct Numerical Simulation (DNS). International Journal of Heat and Mass Transfer, 52, 777–786.

    MATH  Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2012). Heat transfer from a nano-sphere with temperature and velocity discontinuities at the interface. International Journal of Heat and Mass Transfer, 55, 6491–6498.

    Google Scholar 

  • Feng, Z. G., Michaelides, E. E., & Mao, S. L. (2012). On the drag force of a viscous sphere with interfacial slip at small but finite Reynolds numbers. Fluid Dynamics Research, 44, 025502. doi:10.1088/0169-5983/44/2/025502.

    MathSciNet  Google Scholar 

  • Fourier, J. (1822). Theorie Analytique de la Chaleur. Paris: Chez Firmin Didot.

    Google Scholar 

  • Fukuta, N., & Walter, L. A. (1970). Kinetics of hydrometeor growth from a vapor-spherical model. Journal of Atmospheric Sciences, 27, 1160–1172.

    Google Scholar 

  • Galindo, V., & Gerbeth, G. (1993). A note on the force on an accelerating spherical drop at low Reynolds numbers. Physics of Fluids, 5, 3290–3292.

    MATH  Google Scholar 

  • Gay, M., & Michaelides, E. E. (2003). Effect of the history term on the transient energy equation of a sphere. International Journal of Heat and Mass Transfer, 46, 1575–1586.

    MATH  Google Scholar 

  • Gibbs, J. W. (1928). On the equilibrium of heterogeneous substances, 1878. In J. W. Gibbs (Ed.), The collective works of J. Willard Gibbs. New York: Longmans.

    Google Scholar 

  • Hadamard, J. S. (1911). Mouvement permanent lent d’ une sphere liquide et visqueuse dans un liquide visqueux. Comptes Rendus de l'Académie des Sciences Paris, 152, 1735–1738.

    MATH  Google Scholar 

  • Haider, A. M., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technology, 58, 63–70.

    Google Scholar 

  • Hansen, J. P. (1986). Molecular dynamic simulation of Coulomb systems. In G. Ciccotti & W. G. Hoover (Eds.), Molecular-dynamics simulation of statistical-mechanical systems (Proceedings of the International School of Physics “Enrico Fermi” Varenna, 1985). Amsterdam: North-Holland Elsevier Science Publisher.

    Google Scholar 

  • Happel, J., & Brenner, H. (1986). Low Reynolds number hydrodynamics (4th printing). Dordecht: Martinus Nijhoff.

    Google Scholar 

  • Hartman, M., & Yates, J. G. (1993). Free-fall of solid particles through fluids. Collection of Czechoslovak Chemical Communications, 58, 961–974.

    Google Scholar 

  • Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of nonspherical particles. Powder Technology, 184, 361–365.

    Google Scholar 

  • Hoover, W. G. (1991). Computational statistical mechanics. Amsterdam: Elsevier.

    Google Scholar 

  • Hutchins D. K., Harper M. H., & Felder R. L. (1995). Slip correction measurements for spherical particles by modulated dynamic light scattering. Aerosol Science and Technology, 22, 202–218.

    Google Scholar 

  • Ishiyama, T., Yano, T., & Fujikawa, S. (2004). Molecular dynamics study of kinetic boundary condition at a vapor-liquid interface for methanol. Proceedings of 5th International Conference on Multiphase Flow. Yokohama, Japan.

    Google Scholar 

  • Ito, T., Hirata, Y., & Kukita, Y. (2004) Molecular dynamics study on the stress field near a moving contact line. Proceedings of 5th International Conference on Multiphase Flow. Yokohama, Japan.

    Google Scholar 

  • Jones, I. P. (1973). Low Reynolds number flow past a porous spherical shell. Proceedings of the Cambridge Philosophical Society, 73, 231–238.

    MATH  Google Scholar 

  • Kang, S. W. (1967). Analysis of condensation droplet growth in rarefied and continuum environments. AIAA Journal, 5, 1288–1295.

    Google Scholar 

  • Keh, H. J., & Shiau, S. C. (2000). Effects of inertia on the slow motion of aerosol particles. Chemical Engineering Science, 55, 4415–4421.

    Google Scholar 

  • Kim, J. H., Mulholland, G. W., Pui, D. Y. H., & Kukuck, S. R. (2005). Slip correction measurements of certified PSL nanoparticles using a nanometer Differential Mobility Analyzer (nano-DMA) for Knudsen number from 0.5 to 83. Journal of Research of the National Institute of Standards and Technology, 110, 31–54.

    Google Scholar 

  • Knudsen, M., & Weber, S. (1911). Resistance to motion of small particles. Annalen der Physik, 36, 981–985.

    Google Scholar 

  • Koplik, J., & Banavar, J. R. (1995). Continuum deductions from molecular hydrodynamics. Annual Review of Fluid Mechanics, 27, 257–293.

    Google Scholar 

  • Kurose, R., Makino, H., Komori, S., Nakamura, M., Akamatsu, F., & Katsuki, M. (2003). Effects of outflow from surface of sphere on drag, shear lift and scalar diffusion. Physics of Fluids, 15, 2338–2351.

    Google Scholar 

  • Lasso, I. A., & Weidman, P. D. (1986). Stokes drag on hollow cylinders and conglomerates. Physics of Fluids, 29(12), 3921–3934.

    Google Scholar 

  • Lawrence, C. J., & Weinbaum, S. (1988). The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. Journal of Fluid Mechanics, 189, 463–498.

    MATH  Google Scholar 

  • Leal, L. G. (1992). Laminar flow and convective transport processes. Boston: Butterworth-Heineman.

    Google Scholar 

  • Leeder, M. R. (1982). Sedimentology, process and product. London: Allen and Unwin.

    Google Scholar 

  • Levesque, D., & Verlet, L. (1970). Computer ‘experiments’ on classical fluids. III. Time-dependent self-correlation functions. Physical Review A, 2, 2514–2520.

    Google Scholar 

  • Ling, Y., Haselbacher, A., & Balachandar, S. (2011a). Importance of unsteady contributions to force and heating for particles in compressible flows: Part 1: Modeling and analysis for shock–particle interaction. International Journal of Multiphase Flow, 37, 1026–1044.

    Google Scholar 

  • Ling, Y., Haselbacher, A., & Balachandar, S. (2011b). Importance of unsteady contributions to force and heating for particles in compressible flows: Part 2: Application to particle dispersal by blast waves. International Journal of Multiphase Flow, 37, 1013–1025.

    Google Scholar 

  • Loth, E. (2008). Drag of non-spherical solid particles of regular and irregular shape. Powder Technology, 182, 342–353.

    Google Scholar 

  • Lovalenti, P. M., & Brady, J. F. (1993a). The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds numbers. Journal of Fluid Mechanics, 256, 561–601.

    MATH  MathSciNet  Google Scholar 

  • Lovalenti, P. M., & Brady, J. F. (1993b). The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds numbers. Physics of Fluids, 5, 2104–2116.

    MATH  MathSciNet  Google Scholar 

  • Luikov, A. (1978). Heat and mass transfer. Moscow: Mir Publishers.

    Google Scholar 

  • Madhav, G. V., & Chhabra, R. P. (1995). Drag on non-spherical particles in viscous fluids. International Journal of Mineral Processing, 43, 15–29.

    Google Scholar 

  • Magnus, G. (1861). A note on the rotary motion of the liquid jet. Annalen der Physik und Chemie, 63, 363–365.

    Google Scholar 

  • Maxey, M. R., & Riley, J. J. (1983). Equation of motion of a small rigid sphere in a non-uniform flow. Physics of Fluids, 26, 883–889.

    MATH  Google Scholar 

  • McLaughlin, J. B. (1991). Inertial migration of a small sphere in linear shear flows. Journal of Fluid Mechanics, 224, 261–274.

    MATH  Google Scholar 

  • Mei, R. (1992). An approximate expression of the shear lift on a spherical particle at finite Reynolds numbers. International Journal of Multiphase Flow, 18, 145–160.

    MATH  Google Scholar 

  • Michaelides, E. E. (2003). Hydrodynamic force and heat/mass transfer from particles, bubbles and drops—The Freeman Scholar Lecture. Journal of Fluids Engineering, 125, 209–238.

    Google Scholar 

  • Michaelides, E. E. (2006). Particles, bubbles and drops—their motion, heat and mass transfer. Hackensack, NJ: World Scientific.

    Google Scholar 

  • Michaelides, E. E. (2013a). Transport properties of nanofluids—a critical review. Journal of Non-Equilibrium Thermodynamics, 38, 1–79.

    MATH  Google Scholar 

  • Michaelides, E. E. (2013b). Heat and mass transfer in particulate suspensions. New York: Springer.

    Google Scholar 

  • Michaelides, E. E., & Feng, Z. G. (1994). Heat transfer from a rigid sphere in a non-uniform flow and temperature field. International Journal of Heat and Mass Transfer, 37, 2069–2076.

    MATH  Google Scholar 

  • Michaelides, E. E., & Feng, Z. G. (1995). The equation of motion of a small viscous sphere in an unsteady flow with interface slip. International Journal of Multiphase Flow, 21, 315–321.

    Google Scholar 

  • Mikami, H., Endo, Y., & Takashima, Y. (1966). Heat transfer from a sphere to rarefied gas mixtures. International Journal of Heat and Mass Transfer, 9, 1435–1448.

    Google Scholar 

  • Millikan, R. A. (1923). The general law of fall of a small spherical body through a gas and its bearing upon the nature of molecular reflection from surfaces. Physics Review, 22, 1–23.

    Google Scholar 

  • Natoli, V., & Ceperley, D. M. J. (1995). An optimized method for treating long-range potentials. Journal of Computational Physics, 117, 171–178.

    MATH  MathSciNet  Google Scholar 

  • Oesterle, B., & Bui-Dihn, A. (1998). Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers. Experiments in Fluids, 25, 16–22.

    Google Scholar 

  • Olle, B., Bucak, S., Holmes, T. C., Bromberg, L., Hatton, T. L., & Wang, D. I. C. (2006). Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Industrial and Engineering Chemistry Research, 45(12), 4355–4363.

    Google Scholar 

  • Ozisik, M. N. (1980). Heat conduction. New York: Wiley.

    Google Scholar 

  • Pettyjohn, E. S., & Christiansen, E. R. (1948). Effect of particle shape on free-settling rates of isometric particles. Chemical Engineering Progress, 44, 157–172.

    Google Scholar 

  • Pozrikidis, C. (1997). Unsteady heat or mass transport from a suspended particle at low Peclet numbers. Journal of Fluid Mechanics, 289, 652–688.

    Google Scholar 

  • Proudman, I., & Pearson, J. R. A. (1956). Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. Journal of Fluid Mechanics, 2, 237–262.

    MathSciNet  Google Scholar 

  • Rader, D. J. (1990). Momentum slip correction factor for small particles in nine common gases. Journal of Aerosol Science, 21, 161–168.

    Google Scholar 

  • Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Chemical Engineering Progress, 48, 141–146.

    Google Scholar 

  • Rapaport, D. C. (2004). The art of molecular dynamics simulation. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rybczynski, W. (1911). On the translatory motion of a fluid sphere in a viscous medium. Bulletin of the Academy of Sciences, Krakow, Series A, 40–46.

    Google Scholar 

  • Saffman, P. G. (1965). The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22, 385–398.

    MATH  Google Scholar 

  • Saffman, P. G. (1968). The lift on a small sphere in a slow shear flow-corrigendum. Journal of Fluid Mechanics, 31, 624–625.

    Google Scholar 

  • Saffman, P. G. (1971). On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics, 50, 93–101.

    MATH  Google Scholar 

  • Schaaf, S. A., & Chambre, P. L. (1958). Fundamentals of gas dynamics. In H. W. Emmons (Ed.), High speed aerodynamics and jet propulsion (Vol. 3, pp. 689–793). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Schmitt, K. (1959). Grundlegende Untersuchungen zum Thermalprazipitator. Staub, 19, 416–421.

    Google Scholar 

  • Siegel, R., & Howel, J. R. (1981). Thermal radiation heat transfer. New York: McGraw-Hill.

    Google Scholar 

  • Sirignano, W. A. (1999). Fluid dynamics and transport of droplets and sprays. Cambridge: Cambridge University Press.

    Google Scholar 

  • Smythe, W. R. (1968). Static and dynamic electricity (3rd ed.). New York: McGraw Hill.

    Google Scholar 

  • Solymar, L. (1976). Lectures on electromagnetic theory. Oxford: Oxford University Press.

    Google Scholar 

  • Soo, S. L. (1990). Multiphase fluid dynamics. Beijing: Science Press.

    Google Scholar 

  • Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of a pendulum. Transaction of the Cambridge Philosophical Society, 9, 8–106.

    Google Scholar 

  • Takao, K. (1963). Heat transfer from a sphere in a rarefied gas. In J. A. Laurmann (Ed.), Advances in applied mechanics, supplement 2 (Proceedings of the Third Rarefied Gas Dynamics Symposium, Vol. 2, pp. 102–111). New York: Academic.

    Google Scholar 

  • Tanaka, T., Yamagata, K., & Tsuji, Y. (1990). Experiment on fluid forces on a rotating sphere and a spheroid. Proceedings of the Second KSME-JSME Fluids Engineering Conference, 1, 266–378.

    Google Scholar 

  • Taylor, D. T. (1963). Heat transfer from single spheres in a low Reynolds number slip flow. Physics of Fluids, 6, 987–992.

    Google Scholar 

  • Tran-Cong, S., Gay, M., & Michaelides, E. E. (2004). Drag coefficients of irregularly shaped particles. Powder Technology, 139, 21–32.

    Google Scholar 

  • Verlet, L. (1967). Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physics Review, 159, 98–112.

    Google Scholar 

  • Vicsek, T. (1999). Fractal growth phenomena (2nd ed.). Singapore: World Scientific.

    Google Scholar 

  • Vojir, D. J., & Michaelides, E. E. (1994). The effect of the history term on the motion of rigid spheres in a viscous fluid. International Journal of Multiphase Flow, 20, 547–556.

    MATH  Google Scholar 

  • Wadell, H. (1933). Sphericity and roundness of rock particles. Journal of Geology, 41, 310–331.

    Google Scholar 

  • Whitaker, S. (1972). Forced convection heat transfer correlations for flow in pipes past flat plates, single cylinders, single spheres, and for flow in packed beds and tubes bundles. AIChE Journal, 18, 361–371.

    Google Scholar 

  • White, F. M. (1988). Heat and mass transfer. Reading, MA: Addison Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michaelides, E.E.(. (2014). Fundamentals of Nanoparticle Flow and Heat Transfer. In: Nanofluidics. Springer, Cham. https://doi.org/10.1007/978-3-319-05621-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05621-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05620-3

  • Online ISBN: 978-3-319-05621-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics