Skip to main content

Piecewise Linear Transformation in Diffusive Flux Discretizations

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 78))

Abstract

A piecewise linear transformation that allows interpolation of diffused concentration over material discontinuities is presented. It may be used either to evaluate concentration values at auxiliary points, or to approximate face fluxes directly. It does not violate the discrete minimum and maximum principles, so it can be used to construct discretization schemes that preserve solution positivity or discrete minimum and maximum principles. The method has been demonstrated to produce second-order accurate interpolated concentration values and first-order accurate fluxes even when interpolation nodes lie at opposite sides of a discontinuity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agelas, L., Eymard, R., Herbin, R.: A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. Comptes rendus de l'Académie des Sciences Mathématique 374(11–12), 673–676 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bertolazzi, E.: Discrete conservation and discrete maximum principle for elliptic pdes. Math. Mod. Meth. Appl. Sci. 8(4), 685–711 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertolazzi, E., Manzini, G.: A second-order maximum principle preserving finite volume method for steady convection-diffusion problems. SIAM J. Numer. Anal. 43(5), 2172–2199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Danilov, A., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Droniou, J., Le Potier, C.: Construction and convergence study of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal. 49(2), 459–490 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    Google Scholar 

  7. Le Potier, C.: Schéma volumes finis monotone pour des opérateurs de diffusions fortement anisotropes sur des maillages de triangle non structurés. C.R. Math. Acad. Sci. Paris 341, 787–792 (2005)

    Google Scholar 

  8. Le Potier, C.: A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. Int. J. Finite Vol. 6(2), 1–20 (2009)

    Google Scholar 

  9. Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comp. Phys. 227(1), 492–512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comp. Phys. 228(3), 703–716 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Modelling 27(7), 369–385 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems. SIAM J. Sci. Comput. 35(2), A1120–A1136 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comp. Phys. 230(7), 2588–2604 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vassilevski, Y., Kapyrin, I.: Two splitting schemes for nonstationary convection-diffusion problems on tetrahedral meshes. Comput. Math. Math. Phys. 48(8), 1349–1366 (2008)

    Article  MathSciNet  Google Scholar 

  15. Vidović, D., Dimkić, M., Pušić, M.: Accelerated non-linear finite volume method for diffusion. J. Comp. Phys. 230(7), 2722–2735 (2011)

    Article  MATH  Google Scholar 

  16. Vidović, D., Dotlić, M., Dimkić, M., Pušić, M., Pokorni, B.: Convex combinations for diffusion schemes. J. Comp. Phys. 264, 11–27 (2013)

    Article  Google Scholar 

  17. Yuan, A., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comp. Phys. 227(12), 6288–6312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through the Technology Development Project TR37014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vidović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vidović, D., Dotlić, M., Pokorni, B., Pušić, M., Dimkić, M. (2014). Piecewise Linear Transformation in Diffusive Flux Discretizations. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics & Statistics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-05591-6_72

Download citation

Publish with us

Policies and ethics