Advertisement

Incorporating Interpretation into Risky Decision-Making

A Computational Model
  • David A. Broniatowski
  • Valerie F. Reyna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8393)

Abstract

Most leading computational theories of decision-making under risk do not have mechanisms to account for the incorporation of cultural factors. Therefore, they are of limited utility to scholars and practitioners who wish to model, and predict, how culture influences decision outcomes. Fuzzy Trace Theory (FTT) posits that people encode risk information at multiple levels of representation – namely, gist, which captures the culturally contingent meaning, or interpretation, of a stimulus, and verbatim, which is a detailed symbolic representation of the stimulus. Decision-makers prefer to rely on gist representations, although conflicts between gist and verbatim can attenuate this reliance. In this paper, we present a computational model of Fuzzy Trace Theory, which is able to successfully predict 14 experimental effects using a small number of assumptions. This technique may ultimately form the basis for an agent-based model, whose rule sets incorporate cultural and other psychosocial factors.

Keywords

framing gist verbatim cultural modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Douglas, M., Wildavsky, A.B.: Risk and culture: An essay on the selection of technological and environmental dangers. University of California Pr. (1983)Google Scholar
  2. 2.
    Jasanoff, S. (ed.): Handbook of science and technology studies. Sage (1995)Google Scholar
  3. 3.
    Sunstein, C.R.: Risk and reason: Safety, law, and the environment. Cambridge University Press (2002)Google Scholar
  4. 4.
    Reyna, V.F.: A new intuitionism: Meaning, memory, and development in Fuzzy-Trace Theory. Judgment and Decision Making 7(3), 332–359 (2012)Google Scholar
  5. 5.
    Tversky, A., Kahneman, D.: The framing of decisions. Science 211, 453–458 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263–291 (1979)Google Scholar
  7. 7.
    Tversky, A., Kahneman, D.: Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty 5(4), 297–323 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Reyna, V.F., Adam, M.B.: Fuzzy-Trace Theory, Risk Communication, and Product Labeling in Sexually Transmitted Diseases. Risk Analysis 23(2), 325–342 (2003)CrossRefGoogle Scholar
  9. 9.
    Rivers, S.E., Reyna, V.F., Mills, B.: Risk taking under the influence: A fuzzy-trace theory of emotion in adolescence. Developmental Review 28(1), 107–144 (2008)CrossRefGoogle Scholar
  10. 10.
    Frank, M.C., Fedorenko, E., Lai, P., Saxe, R., Gibson, E.: Verbal interference suppresses exact numerical representation. Cognitive Psychology 64(1), 74–92 (2012)Google Scholar
  11. 11.
    Venkatraman, V., Huettel, S.A.: Strategic control in decision-making under uncertainty. European Journal of Neuroscience 35(7), 1075–1082 (2012)CrossRefGoogle Scholar
  12. 12.
    Venkatraman, V., Payne, J.W., Bettman, J.R., Luce, M.F., Huettel, S.A.: Separate neural mechanisms underlie choices and strategic preferences in risky decision making. Neuron 62(4), 593–602 (2009)CrossRefGoogle Scholar
  13. 13.
    Schurr, A., Ritov, I.: The Effect of Giving It All Up on Valuation: A New Look at the Endowment Effect. Management Science (2013)Google Scholar
  14. 14.
    Reyna, V.F., Chick, C.F., Corbin, J.C., Hsia, A.N.: Developmental Reversals in Risky Decision Making Intelligence Agents Show Larger Decision Biases Than College Students. Psychological Science (2013) 0956797613497022Google Scholar
  15. 15.
    Kühberger, A., Tanner, C.: Risky choice framing: Task versions and a comparison of prospect theory and fuzzy-trace theory. Journal of Behavioral Decision Making 23(3), 314–329 (2010)CrossRefGoogle Scholar
  16. 16.
    Conlisk, J.: Three variants on the Allais example. The American Economic Review, 392–407 (1989)Google Scholar
  17. 17.
    Carlin, P.S.: Is the Allais paradox robust to a seemingly trivial change of frame? Economics Letters 34(3), 241–244 (1990)CrossRefGoogle Scholar
  18. 18.
    Allais, M.: Fondements théoriques, perspectives et conditions d’un Marché commun effectif: extrait de la Revue d’économie politique numéro spécial" Le Marché commun et ses problèmes". CNRS, Janvier-Février (1958)Google Scholar
  19. 19.
    Stanovich, K.E., West, R.F.: On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology 94(4), 672 (2008)CrossRefGoogle Scholar
  20. 20.
    Bohm, P., Lind, H.: A note on the robustness of a classical framing result. Journal of Economic Psychology 13(2), 355–361 (1992)CrossRefGoogle Scholar
  21. 21.
    Wang, X.T.: Framing effects: Dynamics and task domains. Organizational Behavior and Human Decision Processes 68(2), 145–157 (1996)CrossRefGoogle Scholar
  22. 22.
    Wang, X.T., Johnston, V.S.: Perceived social context and risk preference: A re‐examination of framing effects in a life‐death decision problem. Journal of Behavioral Decision Making 8(4), 279–293 (1995)CrossRefGoogle Scholar
  23. 23.
    Takemura, K.: Influence of elaboration on the framing of decision. The Journal of Psychology 128(1), 33–39 (1994)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Highhouse, S., Yüce, P.: Perspectives, perceptions, and risk-taking behavior. Organizational Behavior and Human Decision Processes 65(2), 159–167 (1996)CrossRefGoogle Scholar
  25. 25.
    Stanovich, K.E., West, R.F.: Individual differences in framing and conjunction effects. Thinking & Reasoning 4(4), 289–317 (1998)CrossRefGoogle Scholar
  26. 26.
    Druckman, J.N.: The implications of framing effects for citizen competence. Political Behavior 23(3), 225–256 (2001)CrossRefGoogle Scholar
  27. 27.
    Druckman, J.N.: Evaluating framing effects. Journal of Economic Psychology 22(1), 91–101 (2001)CrossRefGoogle Scholar
  28. 28.
    Levin, I.P., Chapman, D.P.: Risk taking, frame of reference, and characterization of victim groups in AIDS treatment decisions. Journal of Experimental Social Psychology 26(5), 421–434 (1990)CrossRefGoogle Scholar
  29. 29.
    Stone, E.R., Yates, J.F., Parker, A.M.: Risk communication: Absolute versus relative expressions of low-probability risks. Organizational Behavior and Human Decision Processes 60(3), 387–408 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David A. Broniatowski
    • 1
  • Valerie F. Reyna
    • 2
  1. 1.Department of Engineering Management and Systems EngineeringThe George Washington UniversityWashingtonUSA
  2. 2.Departments of Psychology and Human DevelopmentCornell UniversityIthacaUSA

Personalised recommendations