Path Following in Social Web Search

  • Jared Lorince
  • Debora Donato
  • Peter M. Todd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8393)


Many organisms, human and otherwise, engage in path following in physical environments across a wide variety of contexts. Inspired by evidence that spatial search and information search share cognitive underpinnings, we explored whether path information could also be useful in a Web search context. We developed a prototype interface for presenting a user with the “search path” (sequence of clicks and queries) of another user, and ran a user study in which participants performed a series of search tasks while having access to search path information. Results suggest that path information can be a useful search aid, but that better path representations are needed. This application highlights the benefits of a cognitive science-based search perspective for the design of Web search systems and the need for further work on aggregating and presenting search trajectories in a Web search context.


Search Paths User Study Path Following Social Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5(2), 97–116 (1999)CrossRefGoogle Scholar
  2. 2.
    Helbing, D., Molnar, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28(3), 361–384 (2001)CrossRefGoogle Scholar
  3. 3.
    Goldstone, R.L., Roberts, M.E.: Self-organized trail systems in groups of humans. Complexity 11(6), 43 (2006)CrossRefGoogle Scholar
  4. 4.
    Hills, T.T.: Animal foraging and the evolution of goal-directed cognition. Cognitive Science 30(1), 3–41 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hills, T.T., Todd, P.M., Goldstone, R.L.: Search in external and internal spaces: Evidence for generalized cognitive search processes. Psychological Science 19(8), 802–808 (2008)CrossRefGoogle Scholar
  6. 6.
    Todd, P.M., Hills, T.T., Robbins, T.W. (eds.): Cognitive Search: Evolution, Algorithms, and the Brain. MIT Press (2012)Google Scholar
  7. 7.
    Glenberg, A.M.: Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: Cognitive Science 1, 586–596 (2010)Google Scholar
  8. 8.
    Pirolli, P., Card, S.: Information foraging in information access environments. In: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, pp. 51–58 (1995)Google Scholar
  9. 9.
    Pirolli, P.: Information foraging theory: Adaptive interaction with information. Oxford University Press, USA (2007)CrossRefGoogle Scholar
  10. 10.
    Hills, T.T., Todd, P.M., Goldstone, R.L.: The central executive as a search process: priming exploration and exploitation across domains. Journal of Experimental Psychology: General 139(4), 590 (2010)CrossRefGoogle Scholar
  11. 11.
    Wu, J., Aberer, K.: Swarm intelligent surfing in the gweb. In: Cueva Lovelle, J.M., González Rodríguez, B.M., Gayo, J.E.L., del Pueto Paule Ruiz, M., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 431–440. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kantor, P.B., Boros, E., Melamed, B., Menkov, V.: The information quest: A dynamic model of user’s information needs. In: Proc. of the American Society For Information Science Annual Meeting, vol. 36, pp. 536–545 (1999)Google Scholar
  13. 13.
    Furmanski, C., Payton, D., Daily, M.: Quantitative evaluation methodology for dynamic, web-based collaboration tools. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, p. 10. IEEE (2004)Google Scholar
  14. 14.
    Gayo-Avello, D., Brenes, D.J.: Making the road by searching - a search engine based on swarm information foraging. CoRR abs/0911.3979 (2009)Google Scholar
  15. 15.
    Attfield, S., Kazai, G., Lalmas, M., Piwowarski, B.: Towards a science of user engagement. In: WSDM Workshop on User Modelling for Web Applications (2011)Google Scholar
  16. 16.
    McCay-Peet, L., Lalmas, M., Navalpakkam, V.: On saliency, affect and focused attention. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 541–550 (2012)Google Scholar
  17. 17.
    O’Brien, H.: Exploring user engagement in online news interactions. Proceedings of the American Society for Information Science and Technology 48(1), 1–10 (2011)CrossRefGoogle Scholar
  18. 18.
    O’Brien, H.L., Toms, E.G.: Is there a universal instrument for measuring interactive information retrieval?: The case of the user engagement scale. In: Proceedings of the Third Symposium on Information Interaction in Context, pp. 335–340 (2010)Google Scholar
  19. 19.
    O’Brien, H., Toms, E.: The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology 61(1), 50–69 (2009)Google Scholar
  20. 20.
    Hoeber, O., Yang, X.D.: A comparative user study of web search interfaces: HotMap, Concept Highlighter, and Google. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 866–874 (2006)Google Scholar
  21. 21.
    Capra, R.: HCI Browser: A Tool for Administration and Data Collection for Studies of Web Search Behaviors. In: Marcus, A. (ed.) HCII 2011 and DUXU 2011, Part II. LNCS, vol. 6770, pp. 259–268. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jared Lorince
    • 1
  • Debora Donato
    • 2
  • Peter M. Todd
    • 1
  1. 1.Cognitive Science Program, Department of Psychological & Brain SciencesIndiana UniversityBloomingtonUSA
  2. 2.StumbleUpon, Inc.San FranciscoUSA

Personalised recommendations