Skip to main content

Charge Exchange: Atomistics

  • Chapter
  • First Online:
Particle Penetration and Radiation Effects Volume 2

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 179))

  • 1404 Accesses

Abstract

This chapter addresses primarily the process of charge exchange and cross sections for electron capture. The theory of electron loss, which is similar to the theory of target ionization, is indicated only briefly in this chapter. The treatment of charge exchange includes classical and quantal theory of the Thomas process as well as other classical models by Bohr and others. Essential steps are described in the development of the quantum theory of charge exchange for light ions, in particular problems encountered with the Brinkman-Kramers theory and the significance of first- versus second-order perturbation theory in charge exchange. Brief accounts are given of the distorted-wave and eikonal approximations to charge exchange as well as the process of radiative electron capture. The chapter concludes with a list of data sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron R. Amado R.D. and Lee B.W. (1961): Divergence of the Green’s Function Series for Rearrangement Collisions. Phys Rev 121, 319–323

    Google Scholar 

  • Abrines R. and Percival I.C. (1966a): Classical theory of charge transfer and ionization of hydrogen by protons. Proc Phys Soc 88, 861–872

    Google Scholar 

  • Abrines R. and Percival I.C. (1966b): A generalized correspondence principle and proton-hydrogen collisions. Proc Phys Soc 88, 873–883

    Google Scholar 

  • Abufager P.N., Fainstein P.D., Martinez A.E. and Rivarola R.D. (2005): Single electron capture differential cross section in He\(^+\) + He collisions at intermediate and high collision energies. J Phys B 38, 11–22

    Google Scholar 

  • Adivi E.G. and Bolorizadeh M.A. (2004): Faddeev treatment of single-electron capture by protons in collision with many-electron atoms. J Phys B 37, 3321–3338

    Google Scholar 

  • Allison S.K. (1958): Experimental results on charge-changing collisions of hydrogen and helium atoms and ions at kinetic energies above 0.2 keV. Rev Mod Phys 30, 1137–1168

    Google Scholar 

  • Alonso J. and Gould H. (1982): Charge-changing cross-sections for pb and xe ions at velocities up to 4 x 109 cm/sec. Phys Rev A 26, 1134–1137

    Google Scholar 

  • Bates D.R. (1958): Electron capture in fast collisions. Proc Roy Soc A 247, 294–301

    Google Scholar 

  • Bates D.R. and Dalgarno A. (1952): Electron capture I: Resonance capture from hydrogen atoms by fast protons. Proc Phys Soc A65, 919–925

    Google Scholar 

  • Belkić D., Gayet R. and Salin A. (1979): Electron-capture in high-energy ion-atom collisions. Phys Rep 56, 279–369

    Google Scholar 

  • Belkić D., Gayet R. and Salin A. (1992): Cross-sections for electron-capture from atomic-hydrogen by fully stripped ions. At Data Nucl Data Tab 56, 59–150

    Google Scholar 

  • Belkić D. and Janev R.K. (1973): Electron capture from atomic hydrogen and helium atoms by fast alpha particles. J Phys B 6, 1020–1027

    Google Scholar 

  • Belkić D., Saini S. and Taylor H.S. (1987): Critical test of first-order theories for electron transfer in collisions between multicharged ions and hydrogen: The boundary condition problem. Phys Rev A 36, 1601–1617

    Google Scholar 

  • Bell G.I. (1953): The capture and loss of electrons by fission fragments. Phys Rev 90, 548–557

    Google Scholar 

  • Betz H.D. (1972): Charge states and charge-changing cross sections of fast heavy ions penetrating through gaseous and solid media. Rev Mod Phys 44, 465–539

    Google Scholar 

  • Bohr N. (1940): Scattering and stopping of fission fragments. Phys Rev 58, 654–655

    Google Scholar 

  • Bohr N. (1941): Velocity-range relation for fission fragments. Phys Rev 59, 270–275

    Google Scholar 

  • Bohr N. (1948): The penetration of atomic particles through matter. Mat Fys Medd Dan Vid Selsk 18 no. 8, 1–144

    Google Scholar 

  • Bohr N. and Lindhard J. (1954): Electron capture and loss by heavy ions penetrating through matter. Mat Fys Medd Dan Vid Selsk 28 no. 7, 1–31

    Google Scholar 

  • Bransden B.H. and McDowell M.R.C. (1992): Charge exchange and the theory of ion-atom collisions. Clarendon Press, Oxford

    Google Scholar 

  • Briggs J.S. (1977): Impact-parameter formulation of the impulse approximation for charge exchange. J Phys B 10, 3075–3089

    Google Scholar 

  • Brinkman H.C. and Kramers H.A. (1930): Zur Theorie der Einfangung von Elektronen durch Alpha-Teilchen Proc Roy Acad Amsterdam 33, 973–984.

    Google Scholar 

  • Cheshire I.M. (1964): Continuum distorted wave approximation; resonant charge transfer by fast protons in atomic hydrogen. Proc Phys Soc 84, 89–98

    Google Scholar 

  • Crothers D.F.S. and Holt A.R. (1966): The first Born approximation for collisions between heavy particles. Proc Phys Soc 88, 75–81

    Google Scholar 

  • Decker F. and Eichler J. (1989): Exact second-order Born calculations for charge exchange with Coulomb boundary conditions. J Phys B 22, L95–L100

    Google Scholar 

  • Dehmel R.C., Chau H.K. and Fleischmann H.H. (1973): Experimental stripping cross sections for atoms and ions in gases 1950–1970. Atomic Data 5, 231–289

    Google Scholar 

  • Dettmann K. (1971): Wave packet theory of coulomb scattering. Z Physik 244, 86

    Google Scholar 

  • Deumens E., Diz A., Longo R. and Öhrn Y. (1994): Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems. Rev Mod Phys 66, 917–983

    Google Scholar 

  • Dewangan D.P. and Eichler J. (1986): A first-order Born approximation for charge exchange with Coulomb boundary conditions. J Phys B 19, 2939–2944

    Google Scholar 

  • Dewangan D.P. and Eichler J. (1994): Charge exchange in energetic ion-atom collisions. Phys Rep 247, 59–219

    Google Scholar 

  • Dmitriev I.S., Teplova Y.A., Belkova Y.A., Novikov N.V. and Fainberg Y.A. (2010): Experimental electron loss and capture cross sections in ion-atom collisions. Atomic Data Nucl Data Tab 96, 85–121

    Google Scholar 

  • Drisko R.M. (1955): The theories of positronium and of rearrangement collisions. Ph.D. thesis, Carnegie-Mellon University

    Google Scholar 

  • Eichler J. (1987): Theory of relativistic charge exchange with Coulomb boundary conditions. Phys Rev A 35, 3248–3255

    Google Scholar 

  • Eichler J. and Meyerhof W.E. (1995): Relativistic atomic collisions. Academic Press, San Diego

    Google Scholar 

  • Eichler J. and Stöhlker T. (2007): Radiative electron capture in relativistic ion-atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Physics Rep 439, 1–99

    Google Scholar 

  • Fischer D., Støchkel K., Cederquist H., Zettergren H., Reinhed P., Schuch R., Källberg A., Simonsson A. and Schmidt H.T. (2006): Experimental separation of the Thomas charge-transfer process in high-velocity \(p\)-He collisions. Phys Rev A 73, 052713

    Google Scholar 

  • Flamm L. and Schumann R. (1916): Die Geschwindigkeitsabnahme der \(\alpha \)-Strahlen in Materie. Ann Physik 50, 655

    Google Scholar 

  • Gallagher J.W., Bransden B.H. and Janev R.K. (1983): Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. II. Hydrogen atom-partially stripped ion systems. J Phys Chem Ref Data 12, 873–890

    Google Scholar 

  • Gluckstern R.L. (1955): Electron capture and loss by ions in gases. Phys Rev 98, 1817–1821

    Google Scholar 

  • Halpern A.M. and Law J. (1975): Full first Born approximation for inner-shell pickup in heavy-ion collisions. Phys Rev A 12, 1776–1780

    Google Scholar 

  • Henderson G.H. (1923): Changes in the charge of an alpha-particle passing through matter. Proc Roy Soc A 102, 496–U14

    Google Scholar 

  • Horsdal-Pedersen E. (1981): On the two-state approximation for capture. J Phys B 14, L249–L253

    Google Scholar 

  • Horsdal-Pedersen E., Cocke C.L. and Stockli M. (1983): Experimental Observation of the Thomas Peak in High-Velocity Electron Capture by Protons from He. Phys Rev Lett 50, 1910–1913

    Google Scholar 

  • Horvat V., Watson R.L. and Parameswaran R. (1995): Spectra of l-x-rays from fast highly-charged xe ions traveling in solids. Phys Rev A 51, 363–373

    Google Scholar 

  • Inokuti M. (1971): Inelastic collisions of fast charged particles with atoms and molecules—the Bethe theory revisited. Rev Mod Phys 43, 297–347

    Google Scholar 

  • Jackson J.D. (1975): Classical electrodynamics. John Wiley & Sons, New York

    Google Scholar 

  • Jackson J.D. and Schiff H. (1953): Electron capture by protons passing through hydrogen. Phys Rev 89, 359–365

    Google Scholar 

  • Jakubassa-Amundsen D.H., Höppler R. and Betz H.D. (1984): Radiative electron capture in fast ion-atom collisions. J Phys B 17, 3943–3949

    Google Scholar 

  • Janev R.K., Bransden B.H. and Gallagher J.W. (1983): Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. I. Hydrogen atom-fully stripped ion systems. J Phys Chem Ref Data 12, 829–872

    Google Scholar 

  • Janev R.K. and Gallagher J.W. (1983): Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. III. Nonhydrogenic target atoms. J Phys Chem Ref Data 13, 1199–1249

    Google Scholar 

  • Janev R.K., Phaneuf R.A. and Hunter H.T. (1988): Recommended cross sections for electron capture and ionization in collisions of C\(^{q+}\) and O\(^{q+}\) ions with H, He and H\(_2\). Atomic Data Nucl Data Tab 40, 249–281

    Google Scholar 

  • Janev R.K., Presnyakov L.P. and Shevelko V.P. (1980): One-electron capture from the inner shells in atom-multicharged ion collisions. Physics Letters A 76, 121–124

    Google Scholar 

  • Keene J.P. (1949): Ionization and charge exchange by fast ions of hydrogen and helium. Phil Mag 40, 369–385

    Google Scholar 

  • Kienle P., Kleber M., Povh B., Diamond R.M. and Stephens F.S. (1973): Radiative capture and bremsstrahlung of bound electrons induced by heavy ions. Phys Rev Lett 31, 1099–1102

    Google Scholar 

  • Killian B.J., Cabrera-Trujillo R., Deumen E. and Öhrn Y. (2004): Resonant charge transfer between H\(^+\) and H from 1 to 5000 eV. J Phys B 37, 4733–4747

    Google Scholar 

  • Kleber M. and Jakubassa D.H. (1975): Radiative electron capture in heavy-ion collisions. Nucl Phys A 252, 152–162

    Google Scholar 

  • Knudsen H., Haugen H.K. and Hvelplund P. (1981a): Single-electron-capture cross section for medium- and high-velocity, highly charged ions colliding with atoms. Phys Rev A 23, 597–610

    Google Scholar 

  • Knudsen H., Haugen H.K. and Hvelplund P. (1981b): Single-electron capture cross section ofr medium- and high-velocity, highly charged ions colliding with atoms. Phys Rev A 23, 597–610

    Google Scholar 

  • Knudson A.R., Burghalter P.G. and Nagel D.J. (1974): Vacancy configurations of argon projectile ions in solids. Phys Rev A 10, 2118–2122

    Google Scholar 

  • Kobayashi K., Toshima N. and Ishihara T. (1985): Eikonal approximation for proton-helium electron capture processes. Phys Rev A 32, 1363–1368

    Google Scholar 

  • Kramer P.J. (1972): Exact calculation of the second-order Born terms for proton-hydrogen electron-transfer collisions. Phys Rev A 6, 2125–2130

    Google Scholar 

  • Kumakhov M.A. and Komarov F.F. (1981): Energy loss and ion ranges in solids. Gordon and Breach, New York

    Google Scholar 

  • Landau L.D. and Lifshitz E.M. (1960): Quantum mechanics. Non-relativistic theory, vol. 3 of Course of theoretical physics. Pergamon Press, Oxford

    Google Scholar 

  • Lassen N.O. (1951a): Total charges of fission fragments as functions of the pressure in the stopping gas. Mat Fys Medd Dan Vid Selsk 26 no. 12, 1–19

    Google Scholar 

  • Lassen N.O. (1951b): The total charges of fission fragments in gaseous and solid stopping media. Mat Fys Medd Dan Vid Selsk 26 no. 5, 1–28

    Google Scholar 

  • Lo H.H. and Fite W.L. (1969): Electron-capture and loss cross sections for fast heavy particles passing through gases. Atomic Data 1, 305–328

    Google Scholar 

  • Macek J. and Taulbjerg K. (1981): Correction to zp-zt expansions for electron-capture. Phys Rev Lett 46, 170–174

    Google Scholar 

  • Macek J.H. and Shakeshaft R. (1980): Second Born approximation with the Coulomb Green’s function: Electron capture from a hydrogenlike ion by a bare ion. Phys Rev A 22, 1441–1446

    Google Scholar 

  • McDowell M.R.C. and Coleman J.P. (1970): Introduction to the theory of ion-atom collisions. North Holland Publ. Co., Amsterdam

    Google Scholar 

  • McGuire J.H. and Weaver L. (1977): Independent electron approximation for atomic scattering by heavy particles. Phys Rev A 16, 41–47

    Google Scholar 

  • Mittleman M.H. (1964): Relativistic effects in charge transfer. Proc Phys Soc 84, 453–454

    Google Scholar 

  • Moiseiwitsch B.L. (1980): Relativistic effects in atomic collisions theory. Adv At Mol Phys 16, 281–318

    Google Scholar 

  • Molière G. (1947): Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. Z Naturforsch 2a, 133–145

    Google Scholar 

  • Nastasi M., Hirvonen J.K. and Mayer J.W. (1996): Ion-solid interactions: Fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Nikolaev V.S. (1965): Electron capture and loss by fast ions in atomic collisions. Usp Fiz Nauk 85, 679–720. [Engl. Transl. Sov. Phys. Uspekhi 8, 269–294 (1965)]

    Google Scholar 

  • Olson R., Ullrich J. and Schmidt-Boecking H. (1989): Multiple-ionization collision dynamics. Phys Rev A 39, 5572

    Google Scholar 

  • Olson R.E. and Salop A. (1977): Charge-transfer and impact-ionization cross sections for fully and partially ripped positive ions colliding with atomic hydrogen. Phys Rev A 17, 531–541

    Google Scholar 

  • Olson R.E., Watson R.L., Horvat V. and Zaharakis K.E. (2002): Projectile and target ionization in MeV u(-1) collisions of Xe ions with N-2. J Phys B 35, 1893–1907

    Google Scholar 

  • Oppenheimer J.R. (1928): On the quantum theory of the capture of electrons. Phys Rev 31, 349–356

    Google Scholar 

  • Raisbeck G. and Yiou F. (1971): Electron capture by 40-, 155-, and 600-MeV protons in thin foils of mylar, Al, Ni, and Ta. Phys Rev A 4, 1858–1868

    Google Scholar 

  • Ribe F.L. (1951): Electron-capture cross sections for protons passing through hydrogen gas. Phys Rev 83, 1217–1225

    Google Scholar 

  • Rozet J.P., Stephan C. and Vernhet D. (1996): ETACHA: a program for calculating charge states at GANIL energies. Nucl Instrum Methods B 107, 67–70

    Google Scholar 

  • Rutherford E. (1924): The capture and loss of electrons by alpha particles. Philos Mag 47, 277

    Google Scholar 

  • Ryufuku H. (1982): Ionization, excitation, and charge-transfer for impacts of h\(^+\), li3\(^+\), b5\(^+\), c6\(^+\), and si14\(^+\) ions on atomic-hydrogen. Phys Rev A 25, 720–736

    Google Scholar 

  • Sauter F. (1931a): Ãœber den atomaren Photoeffekt bei grosser Härte der anregenden Strahlung. Ann Physik 401, 217–248

    Google Scholar 

  • Sauter F. (1931b): Ãœber den atomaren Photoeffekt in der K-Schale nach der relativistischen Wellenmechanik Diracs. Ann Physik 403, 454–488

    Google Scholar 

  • Schiff L.I. (1981): Quantum mechanics. McGraw-Hill, Auckland

    Google Scholar 

  • Schlachter A.S., Stearns J.W., Graham W.G., Berkner K.H., Poyle R.V. and Tanis J.A. (1983): Electron cpture for fast highly charged ions in gas targets: An empirical scaling rule. Phys Rev A 27, 3372–3374

    Google Scholar 

  • Schnopper H.W., Betz H.D., Delvaille J.P., Kalata K. and Sohval A.R. (1972): Evidence fo radiative electron capture by fast, highly stripped heavy ions. Phys Rev Lett 29, 898–901

    Google Scholar 

  • Schultz D.R., Reinhold C.O., Olson R.E. and Seely D.G. (1992): Differential cross sections for state-selective electron capture in 25–100-keV proton-helium collisions. Phys Rev A 46, 275–383

    Google Scholar 

  • Shakeshaft R. (1979): Relativistic effects in electron capture from a hydrogenlike atom by a fast-moving bare ion. Phys Rev A 20, 779–786

    Google Scholar 

  • Shevelko V.P., Rosmej O., Tawara H. and Tolstikhina I.Y. (2004): The target-density effect in electron-capture processes. J Phys B 37, 201–213

    Google Scholar 

  • Shevelko V.P., Stohlker T., Tawara H., Tolstikhina I.Y. and Weber G. (2010): Electron capture in intermediate-to-fast heavy ion collisions with neutral atoms. Nucl Instrum Methods B 268, 2611–2616

    Google Scholar 

  • Shevelko V.P., Tolstikhina I.Y. and Stöhlker T. (2001): Stripping of fast heavy low-charged ions in gaseous targets. Nucl Instrum Methods B 184, 295–308

    Google Scholar 

  • Sommerfeld A. and Schur G. (1930): Ãœber den Photoeffekt in der K-Schale der Atome, insbesondere über die Voreilung der Photoelektronen. Ann Physik 396, 409–432

    Google Scholar 

  • Spruch L. (1978): High-impact-velocity forward charge transfer from high-Rydberg states as a classical process. Phys Rev A 18, 2016–2021

    Google Scholar 

  • Stobbe M. (1930): Zur uantenmechanik Photoelektrischer Prozesse. Ann Physik 7, 661–715

    Google Scholar 

  • Stöhlker T., Kozhuharov C., Mokler P.H., Olson R.E., Stachura Z. and Warczak A. (1992): Single and double electron-capture in collisions of highly ionized decelerated Ge ions with Ne. J Phys B 25, 4527–4532

    Google Scholar 

  • Tawara H., Kato T. and Nakai Y. (1985): Cross sections for electron capture and loss for positive ions in collisions with atomic and molecular hydrogen. At Data Nucl Data Tab 32, 235–303

    Google Scholar 

  • Thomas L.H. (1927): On the capture of electrons by swiftly moving electrified particles. Proc Roy Soc 114, 561

    Google Scholar 

  • Tolstikhina I.Y. and Shevelko V.P. (2013): Collision processes involving heavy many-electron ions interacting with neutral atoms. Physics-Uspekhi 56, 213–242

    Google Scholar 

  • Toshima N., Ishihara T. and Eichler J. (1987): Distorted-wave theories for electron capture and the associated high-energy behavior of cross sections. Phys Rev A 36, 2659–2666

    Google Scholar 

  • Vogt H., Schuch R., Justitiano E., Schulz M. and Schwab W. (1986): Experimental test of higher-order electron-capture processes in collisions of fast protons with atomic hydrogen. Phys Rev Lett 57, 2256–2259

    Google Scholar 

  • Weng M.S., Schinner A., Sharma A. and Sigmund P. (2006): Primary electron spectra from swift heavy-ion impact: Scaling relations and estimates from modified Bohr theory. Europ Phys J D 39, 209–221

    Google Scholar 

  • Wentzel G. (1926): Zur Theorie des photoelektrischen Effekts. Z Physik 11, 574–589

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sigmund .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sigmund, P. (2014). Charge Exchange: Atomistics. In: Particle Penetration and Radiation Effects Volume 2. Springer Series in Solid-State Sciences, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-05564-0_2

Download citation

Publish with us

Policies and ethics