State of the Art in Image Blending Techniques

  • Ricard PradosEmail author
  • Rafael Garcia
  • László Neumann
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


In this chapter the main state-of-the-art techniques are presented and described. There are three main groups of blending algorithms, each of them showing some benefits and drawbacks. On the one hand, transition smoothing methods minimize the visibility of the seams between two images fusing the image information of the common overlapping area. A drawback of this group of methods is that geometrical image misalignments and moving objects may cause the visualization of artifacts on the overlapping regions. On the other hand, optimal seam finding methods compute the optimal placement of the seam in order to minimize the photometric differences along the path. In the case of this group of methods, problems may appear when joining images acquired with changing illumination conditions or different time exposures. Finally, hybrid methods combine both strategies by fusing the image information around an optimally computed seam. This last group of methods allows avoiding the above mentioned problems. The chapter also proposes a classification of the methods of the literature based on their nature and capabilities. The aim of this classification is to discern the optimal strategy to blend large-scale high-resolution underwater photo-mosaics.


Image blending Transition smoothing Optimal seam finding 


  1. 1.
    Capel, D.: Image Mosaicing and Super-Resolution. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Milgram, D.L.: Computer methods for creating photomosaics. IEEE Trans. Comput. 24(11), 1113–1119 (1975)CrossRefzbMATHGoogle Scholar
  3. 3.
    Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Proceedings of the European Conference on Computer Vision (ECCV), Prague, Czech Republic, May 2004Google Scholar
  4. 4.
    Uyttendaele, M., Eden, A., Szeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 509–516 (2001)Google Scholar
  5. 5.
    Porter, T., Duff, T.: Compositing digital images. In: Proceedings of the Anual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 253–259. ACM, New York, NY, USA (1984)Google Scholar
  6. 6.
    Davis, J.: Mosaics of scenes with moving objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Santa Barbara, CA, USA, June 1998Google Scholar
  7. 7.
    Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In: Proceedings of the Conference on Computer Graphics and Interactive, Techniques, pp. 341–346, August 2001Google Scholar
  8. 8.
    Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen M.: Interactive digital photomontage. ACM Trans. Graphics (SIGGRAPH) (2004)Google Scholar
  9. 9.
    Peleg, S.: Elimination of seams from photomosaics. Int. J. Comput. Vis (IJCV) 16, 90–94 (1981)Google Scholar
  10. 10.
    Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graphics (TOG) 2(4), 217–236 (October 1983)Google Scholar
  11. 11.
    Hsu, C.T., Wu, J.L.: Multiresolution mosaic. IEEE Trans. Consum. Electron. 42(4), 981–990 (1996)CrossRefGoogle Scholar
  12. 12.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graphics (SIGGRAPH) 22(3), 313–318 (2003)CrossRefGoogle Scholar
  13. 13.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester C.: Image inpainting. In: Proceedings of the Annual Conference on Computer Vision and Interactive Techniques (SIGGRAPH), pp. 417–424, July 2000Google Scholar
  14. 14.
    Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Engineer 29(6), 33–41 (1984)Google Scholar
  15. 15.
    Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: IEEE International Conference on Computer Vision (ICCV), pp. 1033–1038, Corfu, Greece, September 1999Google Scholar
  16. 16.
    Boykov, Y., Jolly, M.P.: Interactive organ segmentation using graph cuts. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention, pp 276–286, 2000Google Scholar
  17. 17.
    Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graphics (SIGGRAPH) 22(3), 277–286 (2003)CrossRefGoogle Scholar
  18. 18.
    Agarwala, A.: Efficient gradient-domain compositing using quadtrees. ACM Trans. Graphics (SIGGRAPH) 26(3), 94 (2007)CrossRefGoogle Scholar
  19. 19.
    Hanan, S.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley Longman Publishing Co., Inc, Boston (1990)Google Scholar
  20. 20.
    Szeliski, R., Uyttendaele, M., Steedly D.: Fast poisson blending using multi-splines. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8, April 2011Google Scholar
  21. 21.
    Su, M., Hwang, W., Cheng, K.: Analysis on multiresolution mosaic images. IEEE Trans. Image Process. 13(7), 952–959 (2004)CrossRefGoogle Scholar
  22. 22.
    Zhao, W.: Flexible image blending for image mosaicing with reduced artifacts. Int.l J. Pattern Recogn. Artif. Intell. 20(4), 609–628 (2006)CrossRefGoogle Scholar
  23. 23.
    Gu, F., Rzhanov Y.: Optimal image blending for underwater mosaics. In: Proceedings of the IEEE OCEANS Conference, pp. 1–5, Sept 2006Google Scholar
  24. 24.
    Milgram, D.L.: Adaptive techniques for photomosaicking. IEEE Trans. Comput. C–26(11), 1175–1180 (1977)CrossRefGoogle Scholar
  25. 25.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Gracias, N., Mahoor, M., Negahdaripour, S., Gleason, A.: Fast image blending using watersheds and graph cuts. Image Vis. Comput. 27, 597–607 (2009)CrossRefGoogle Scholar
  28. 28.
    Eden, A., Uyttendaele, M., Szeliski, R.: Seamless image stitching of scenes with large motions and exposure differences. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2498–2505. IEEE Computer Society, Washington, DC, USA, 2006Google Scholar
  29. 29.
    Mills, A., Dudek, G.: Image stitching with dynamic elements. Image Vis. Comput. 27(10), 1593–1602 (2009)CrossRefGoogle Scholar
  30. 30.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graphics (SIGGRAPH) 21(3), 249–256 (2002)CrossRefGoogle Scholar
  31. 31.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graphics (SIGGRAPH) 21, 257–266 (2002)Google Scholar
  32. 32.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graphics (SIGGRAPH) 21, 267–276 (2002)CrossRefGoogle Scholar
  33. 33.
    Szeliski, R.: Video mosaics for virtual environments. IEEE Comput. Graphics Appl. 16(2), 22–30 (1996)CrossRefGoogle Scholar
  34. 34.
    Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), SIGGRAPH ’97, pp. 251–258. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1997Google Scholar
  35. 35.
    Hsu, S., Sawhney, H.S., Kumar, R.: Automated mosaics via topology inference. IEEE Comput. Graphics Appl. 22(2), 44–54 (2002)CrossRefGoogle Scholar
  36. 36.
    Pizarro, O., Singh, H.: Toward large-area mosaicing for underwater scientific applications. IEEE J. Oceanic Eng. 28(4), 651–672 (2003)CrossRefGoogle Scholar
  37. 37.
    Brown, M., Lowe, D.G.: Recognising panoramas. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 12–18. IEEE Computer Society, Washington, DC, USA, 2003Google Scholar
  38. 38.
    Jia, J., Tang, C.-K.: Image registration with global and local luminance alignment. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 156–163, Oct 2003Google Scholar
  39. 39.
    Litvinov, A., Schechner, Y.Y.: Radiometric framework for image mosaicking. J. Opt. Soc. Am. 22(5), 839–848 (2005)CrossRefGoogle Scholar
  40. 40.
    Gracias, N., Gleason, A., Negahdaripour, S., Mahoor, M.: Fast image blending using watersheds and graph cuts. In: Proceedings of the British Machine Vision Conference (BMVC06), Edinburgh, U.K., Sept 2006Google Scholar
  41. 41.
    Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends Comput. Graphics Vis. 2(1), 1–104 (2006)CrossRefGoogle Scholar
  42. 42.
    Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–6, June 2007Google Scholar
  43. 43.
    Nomura, Y., Zhang, L., Nayar, S.K.: Scene collages and flexible camera arrays. In: Proceedings of Eurographics Symposium on Rendering, June 2007Google Scholar
  44. 44.
    Cheng, Y., Xue, D., Li, Y.: A fast mosaic approach for remote sensing images. In: International Conference on Mechatronics and Automation (ICMA), pp. 2009–2013, Aug 2007Google Scholar
  45. 45.
    Pablo, A.: Radiometric alignment and vignetting calibration. In: Proceedings of the International Conference on Computer Vision Systems, 2007Google Scholar
  46. 46.
    Rzhanov, Y., Gu, F.: Enhancement of underwater videomosaics for post-processing. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 1–6, Oct 2007Google Scholar
  47. 47.
    Suen, S.T., Lam, E.Y., Wong, K.K.: Photographic stitching with optimized object and color matching based on image derivatives. Opt. Express 15(12), 7689–7696 (2007)CrossRefGoogle Scholar
  48. 48.
    Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graphics (TOG), 26(3) (2007)Google Scholar
  49. 49.
    Vineet, V., Narayanan, P.J.: Cuda cuts: fast graph cuts on the gpu. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8, June 2008Google Scholar
  50. 50.
    Wen, H., Zhou, J.: An improved algorithm for image mosaic. In: International Symposium on Information Science and Engineering (ISISE), vol. 1, pp. 497–500, Dec 2008Google Scholar
  51. 51.
    Szeliski, R., Uyttendaele, M., Steedly, D.: Fast poisson blending using multi-splines. Technical report, Interactive Visual, Media, April 2008Google Scholar
  52. 52.
    Kim, S.J., Pollefeys, M.: Robust radiometric calibration and vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 562–576 (2008)CrossRefGoogle Scholar
  53. 53.
    Sadeghi, M.A., Hejrati, S.M.M., Gheissari, N.: Poisson local color correction for image stitching. In: Proceedings of the International Conference on Computer Vision, Theory and Applications, pp. 275–282, 2008Google Scholar
  54. 54.
    Xiong, Y., Pulli, K.: Color correction based image blending for creating high resolution panoramic images on mobile devices. In: ACM SIGGRAPH Asia: Posters, SIGGRAPH Asia ’09, pp. 47:1–47:1. NY, USA, New York, 2009Google Scholar
  55. 55.
    Xiong, Y., Pulli, K.: Fast and high-quality image blending on mobile phones. In: 2010 7th IEEE Consumer Communications and Networking Conference (CCNC), pp. 1–5, Jan 2010Google Scholar
  56. 56.
    Botterill, T., Mills, S., Green, R.: Real-time aerial image mosaicing. In: Proceedings of Image and Vision Computing New Zealand, pp. 1–6, Queenstown, NZ, Nov. 2010Google Scholar
  57. 57.
    Johnson-Roberson, M., Pizarro, O., Williams, S.B., Mahon, I.: Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J. Field Robot. 27(1), 21–51 (2010)CrossRefGoogle Scholar
  58. 58.
    Shao, H.-C., Hwang, W.-L.: Optimal multiresolution blending of confocal microscope images. IEEE Trans. Biomed. Eng. 59(2), 531–541 (2012)CrossRefGoogle Scholar
  59. 59.
    Tian, G.Y., Gledhill, D., Taylor, D., Clarke, D.: Colour correction for panoramic imaging. In: Proceedings of Sixth International Conference on Information Visualisation, pp. 483–488, 2002Google Scholar
  60. 60.
    Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)CrossRefGoogle Scholar
  61. 61.
    Xiang, Y., Zou, B., Li, H.: Selective color transfer with multi-source images. Pattern Recogn. Lett. 30(7), 682–689 (2009)CrossRefGoogle Scholar
  62. 62.
    Jaffe, J.S., Moore, K.D., McLean, J., Strand, M.P.: Underwater optical imaging: status and prospects. Oceanography 14, 66–77 (2001)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ricard Prados
    • 1
    Email author
  • Rafael Garcia
    • 1
  • László Neumann
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations