Underwater 2D Mosaicing

  • Ricard PradosEmail author
  • Rafael Garcia
  • László Neumann
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


The current chapter describes the main steps involved in the photo-mosaic building process. These steps comprehend the geometrical registration and warping of the images into a single common reference frame, along with an estimation of the topology of the trajectory performed by the UV, and a global alignment of the recovered trajectory. A widely extended geometrical registration strategy consists of identifying common image features between the involved images, using different image feature detectors. These image features, once identified, become correspondences that are used to estimate the camera motion between consecutive images, as well as to perform a global alignment of the estimated trajectory. Global alignment of all the involved images allows providing geometrical consistence to the underwater map. At the end of the chapter the problems and issues of the photo-mosaicing process are pointed out, with the aim of demonstrating the relevance of image blending techniques as a final step of the photo-mosaicing process.


Photo-mosaicing Image registration Image alignment Image warping Topology estimation Global alignment Deep-ocean surveys 


  1. 1.
    Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), SIGGRAPH’97, pp. 251–258. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997)Google Scholar
  2. 2.
    Sawhney, H., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: Proceedings of the European Conference on Computer Vision, Freiburg, Germany, June 1998Google Scholar
  3. 3.
    Capel, D.: Image Mosaicing and Super-Resolution. Springer, Berlin (2004)Google Scholar
  4. 4.
    Gracias, N., Costeira, J.P., Santos-Victor, J.: Linear global mosaics for underwater surveying. In: Proceedings of the IFAC/EURON Symposium on Autonomous Vehicles (IAV), Lisbon, Portugal, July 2004Google Scholar
  5. 5.
    Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcia, R.: Large-area photo-mosaics using global alignment and navigation data. In: Proceedings of the IEEE OCEANS Conference, pp. 1–9, Oct 2007Google Scholar
  6. 6.
    Elibol, A., Garcia, R., Delaunoy, O., Gracias, N.: A new global alignment method for feature based image mosaicing. In: Proceedings of the International Symposium on Advances in Visual Computing (ISVC), Part II, pp. 257–266. Springer, Berlin, Heidelberg (2008)Google Scholar
  7. 7.
    Elibol, A., Garcia, R., Gracias, N.: A new global alignment approach for underwater optical mapping. Ocean Eng. 38(10), 1207–1219 (2011)CrossRefGoogle Scholar
  8. 8.
    Elibol, A., Gracias, N., Garcia, R.: Augmented state-extended kalman filter combined framework for topology estimation in large-area underwater mapping. J. Field Robot. 27(5), 656–674 (2010)CrossRefGoogle Scholar
  9. 9.
    Elibol, A., Gracias, N., Garcia, R.: Fast topology estimation for image mosaicing using adaptive information thresholding. Robot. Auton. Syst. 61(2), 125–136 (2013)Google Scholar
  10. 10.
    Elibol, A., Gracias, N., Garcia, R., Gleason, A., Gintert, B., Lirman, D.: Efficient autonomous image mosaicing with applications to coral reef monitoring. In: Proceedings of the Workshop on Robotics for Environmental Monitoring held at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 50–57, San Francisco, USA, Sept 2011Google Scholar
  11. 11.
    Brown, M., Hartley, R.I., Nister, D.: Minimal solutions for panoramic stitching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, June 2007Google Scholar
  12. 12.
    Szeliski, R.: Image mosaicing for tele-reality applications. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, pp. 44–53, Dec 1994Google Scholar
  13. 13.
    Dani, P., Chaudhuri, S.: Automated assembling of images: image montage preparation. Pattern Recogn. 28(3), 431–445 (1995)CrossRefGoogle Scholar
  14. 14.
    Horn, B., Shunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)CrossRefGoogle Scholar
  15. 15.
    Shum, H-Y., Szeliski, R.: Construction and refinement of panoramic mosaics with global and local alignment. In: Procedings of the International Conference on Computer Vision (ICCV), p. 953. IEEE Computer Society, Washington, DC, USA, 1998Google Scholar
  16. 16.
    Reddy, B., Chatterji, B.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)CrossRefGoogle Scholar
  17. 17.
    Wolberg, G., Zokai, S.: Robust image registration using log-polar transform. In: Proceedings of the International Conference on Image Processing (ICIP), vol. 1, pp. 493–496, 2000Google Scholar
  18. 18.
    Rzhanov, Y., Huff, L., Cutter, G.R.: Seafloor video mapping: modeling, algorithms, apparatus. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 868–871, 2002Google Scholar
  19. 19.
    Rzhanov, Y., Mayer, L., Beaulieu, S., Shank, T., Soule, S.A., Fornari, D.J.: Deep-sea geo-referenced video mosaics. In: Proceedings of the IEEE OCEANS Conference, pp. 1–6, Sept 2006Google Scholar
  20. 20.
    Lucas, B.D.: Generalized image matching by the method of differences. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA, July 1985 (AAI8601180)Google Scholar
  21. 21.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679, 1981Google Scholar
  22. 22.
    Negahdaripour, S., Xu, X., Khamene, A., Awan, Z.: 3D motion and depth estimation from sea-floor images for mosaic-based positioning, station keeping and navigation of ROVs/AUVs and high resolution sea-floor mapping. In: Procedings of the IEEE/OES Workshop on AUV Navigation, Cambridge, MA, USA, Aug 1998Google Scholar
  23. 23.
    Negahdaripour, S.: Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis. IEEE Trans. Pattern Anal Mach Intell. (PAMI) 20(9), 961–970 (1998)Google Scholar
  24. 24.
    Madjidi, H., Negahdaripour, S.: On robustness and localization accuracy of optical flow computation from color imagery. In: Proceedings of the 3D Data Processing, Visualization and Transmission (3DPVT), 2nd International Symposium, pp. 317–324, 2004Google Scholar
  25. 25.
    Negahdaripour, S., Madjidi, H.: Robust optical flow estimation using underwater color images. In: Proceedings of MTS/IEEE OCEANS Conference, vol. 4, pp. 2309–2316, Sept 2003Google Scholar
  26. 26.
    Negahdaripour, S., Xu, X., Jin, L.: Direct estimation of motion from sea floor images for automatic station-keeping of submersible platforms. IEEE J. Oceanic Eng. 24(3), 370–382 (1999)Google Scholar
  27. 27.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference, pp. 189–192, Manchester, UK, Aug 1988Google Scholar
  28. 28.
    Beaudet P. R.: Rotationally invariant image operators. In: Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 579–583, Kyoto, Japan, Nov 1978Google Scholar
  29. 29.
    Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vision 30, 79–116 (1998)Google Scholar
  30. 30.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision (ICCV), vol. 2, p. 1150. IEEE Computer Society, Washington, DC, USA, 1999Google Scholar
  31. 31.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: European Conference on Computer Vision, pp. 404–417, (2006)Google Scholar
  32. 32.
    Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69, 331–371 (1910). doi: 10.1007/BF01456326 CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 230–235, 1998Google Scholar
  34. 34.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  35. 35.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, Berlin (2003)Google Scholar
  36. 36.
    Negahdaripour, S., Prados, R., Garcia, R.: Planar homography: accuracy analysis and applications. In: IEEE International Conference on Image Processing (ICIP), vol. 1, 1089–1092 (2005)Google Scholar
  37. 37.
    Huang, J-F., Lai, S-H., Cheng, C-M.: Robust fundamental matrix estimation with accurate outlier detection. J. Inf. Sci. Eng. 23(4), 1213–1225 (2007)Google Scholar
  38. 38.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)Google Scholar
  39. 39.
    Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871–880 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)Google Scholar
  41. 41.
    Li, X., Hu, Z.: Rejecting mismatches by correspondence function. Int. J. Comput. Vision 89, 1–17 (2010)CrossRefGoogle Scholar
  42. 42.
    Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends Comput. Graph. Vision 2(1), 1–104 (2006)Google Scholar
  43. 43.
    Capel, D.P.: Image mosaicing and super-resolution. PhD thesis, University of Oxford, Oxford, UK, 2001Google Scholar
  44. 44.
    Marzotto, R., Fusiello, A., Murino, V.: High resolution video mosaicing with global alignment. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 692–698, June–July 2004Google Scholar
  45. 45.
    Davis, J.: Mosaics of scenes with moving objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Santa Barbara, CA, USA, June 1998Google Scholar
  46. 46.
    Kang, E., Cohen, I., Medioni, G.: A graph-based global registration for 2D mosaics. In: Proceedings of the International Conference on Pattern Recognition (ICPR), Barcelona, Spain, Sept 2000Google Scholar
  47. 47.
    Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 24(3), 412–419 (2002)Google Scholar
  48. 48.
    Pizarro, O., Singh, H.: Toward large-area mosaicing for underwater scientific applications. IEEE J. Oceanic Eng. 28(4), 651–672 (2003)Google Scholar
  49. 49.
    Shum, H.Y., Szeliski, R.: Construction of Panoramic Image Mosaics with Global and Local Alignment, pp. 227–268. Springer, New York (2001)Google Scholar
  50. 50.
    Morris, D.D.: Gauge freedoms and uncertainty modeling for 3D computer vision. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Mar 2001Google Scholar
  51. 51.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, ICCV’99, pp. 298–372. Springer, London, UK, 1999Google Scholar
  52. 52.
    Bouguet, J.Y.: Camera Calibration Toolbox. June 2008
  53. 53.
    McLauchlan, P.F., Jaenicke, A.: Image mosaicing using sequential bundle adjustment. Image Vision Comput. 20, 751–759 (2002)Google Scholar
  54. 54.
    Gracias, N., Santos-Victor, J.: Underwater mosaicing and trajectory reconstruction using global alignment. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 2557–2563, Honolulu, Hawaii, U.S.A., Nov 2001Google Scholar
  55. 55.
    Elibol, A., Gracias, N., Garcia, R.: Efficient Topology Estimation for Large Scale Optical Mapping, Volume 82 of Springer Tracts in Advanced Robotics. Springer, Berlin (2012)Google Scholar
  56. 56.
    Shao, B., Jaffe, J.S., Chachisvilis, M., Esener, S.C.: Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements. Opt. Expr. 14(25), 12473–12484 (2006)Google Scholar
  57. 57.
    Barreyre, T., Escartin, J., Garcia, R., Cannat, M., Mittelstaedt, E., Prados, R.: Structure, temporal evolution, and heat flux estimates from a deep-sea hydrothermal field derived from seafloor image mosaics. Geochem. Geophys. Geosyst. 13(4), 1–29 (2012)CrossRefGoogle Scholar
  58. 58.
    Mittelstaedt, E., Escartín, J., Gracias, N., Olive, J.A., Barreyre, T., Davaille, A., Cannat, M., Garcia, R.: Quantifying diffuse and discrete venting at the tour eiffel vent site, lucky strike hydrothermal field. Geochem. Geophys. Geosyst. 13, (2012)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ricard Prados
    • 1
    Email author
  • Rafael Garcia
    • 1
  • László Neumann
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations