• Ricard PradosEmail author
  • Rafael Garcia
  • László Neumann
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


This chapter introduces the reader to the problem of high-quality large-scale underwater optical mapping, as well as to the need for blending techniques to improve the quality of the generated maps. Underwater surveys are nowadays carried out by Underwater Vehicles (UVs), which allow diving at extreme depths during long periods of time. Optical imaging provides short-range high-resolution visual information of the ocean floor. Unfortunately, several medium-specific phenomena, such as light attenuation and scattering, constrain the acquisition by limiting the maximum area covered by a single image. Hence, optically mapping large seafloor areas can only be achieved by building image mosaics from a set of reduced area pictures, i.e. photo-mosaics. Blending techniques provide a set of heterogeneously appearing images of a given map with a continuous and consistent appearance. Beyond visual appearance, blending techniques are also important for proper interpretation and scientific exploitation of seafloor imagery. Finally, the book structure is outlined at the end of the chapter.


Underwater mapping Photo-mosaicing Blending techniques Light attenuation Scattering 


  1. 1.
    Somers, L.H.: History of diving: Selected events, Aug 2002Google Scholar
  2. 2.
    Eustice, R., Singh, H., Leonard, J.J., Walter, M.R.: Visually mapping the rms titanic: conservative covariance estimates for slam information filters. Int. J. Robot. Res. 25(12), 1223–1242 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhu, Z., Riseman, E., Hanson, A., Schultz, H.: An efficient method for geo-referenced video mosaicing for environmental monitoring. Mach. Vis. Appl. 16, 203–216 (2005). doi: 10.1007/s00138-005-0173-x CrossRefGoogle Scholar
  4. 4.
    Escartin, J., Garcia, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humphris, S.E., Renard, J.: Globally aligned photomosaic of the lucky strike hydrothermal vent field (Mid-Atlantic ridge, 37\({^\circ }\)18.5’N): release of georeferenced data, mosaic construction, and viewing software. Geochem. Geophys. Geosyst. 9(12), 12(1)–12(17) (2008). ISSN: 1525-2027. doi: 10.1029/2008GC002204
  5. 5.
    Pizarro, O., Singh, H.: Toward large-area mosaicing for underwater scientific applications. IEEE J. Oceanic Eng. 28(4), 651–672 (2003)CrossRefGoogle Scholar
  6. 6.
    Drap, P., Scaradozzi, D., Gambogi, P., Gauch, F.: Underwater photogrammetry for archaeology-the venus project framework. In: GRAPP, pp. 485–491 (2008)Google Scholar
  7. 7.
    Jerosch, K., Lüdtke, A., Schlüter, M., Ioannidis, G.T.: Automatic content-based analysis of georeferenced image data: detection of beggiatoa mats in seafloor video mosaics from the hakon mosby mud volcano. Comput. Geosci. 33(2), 202–218 (2007)CrossRefGoogle Scholar
  8. 8.
    Lirman, D., Gracias, N., Gintert, B., Gleason, A., Reid, R., Negahdaripour, S., Kramer, P.: Development and application of a video-mosaic survey technology to document the status of coral reef communities. Environ. Monit. Assess. 125, 59–73 (2007). doi: 10.1007/s10661-006-9239-0 CrossRefGoogle Scholar
  9. 9.
    Gleason, A.C.R., Lirman, D., Williams, D., Gracias, N., Gintert, B.E., Madjidi, H., Pamela, R., Chris, B.G., Negahdaripour, S., Miller, M., Kramer, P.: Documenting hurricane impacts on coral reefs using two-dimensional video-mosaic technology. Mar. Ecol. 28(2), 254–258 (2007)CrossRefGoogle Scholar
  10. 10.
    Lirman, D., Gracias, N., Gintert, B., Gleason, A., Deangelo, G., Dick, M., Martinez, E., Reid, R.P.: Damage and recovery assessment of vessel grounding injuries on coral reef habitats using georeferenced landscape video mosaics. Limnol. Oceanogr. Methods 8, 88–97 (2010)CrossRefGoogle Scholar
  11. 11.
    Delaunoy, O., Gracias, N., Garcia, R.: Towards detecting changes in underwater image sequences. In: Proceedings of the MTS/IEEE OCEANS Conference. Kobe, Japan, pp. 1–8 (2008)Google Scholar
  12. 12.
    Heirtzler, J.R.: Project famous. Rev. Geophys. 13(3), 542–542 (1975)CrossRefGoogle Scholar
  13. 13.
    Kopf, J., Uyttendaele, M., Deussen, O., Cohen, M.: Capturing and viewing gigapixel images. ACM Trans. Graph. (SIGGRAPH) 26(3), 93(1)–93(10) (2007)Google Scholar
  14. 14.
    Uyttendaele, M., Eden, A., Szeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 509–516 (2001)Google Scholar
  15. 15.
    Jia, J., Tang, C.-K.: Image registration with global and local luminance alignment. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 156–163, Oct 2003Google Scholar
  16. 16.
    Litvinov, A., Schechner, Y.Y.: Radiometric framework for image mosaicking. J. Opt. Soc. Am. 22(5), 839–848 (2005)CrossRefGoogle Scholar
  17. 17.
    Zhao, W.: Flexible image blending for image mosaicing with reduced artifacts. Int. J. Pattern Recogn. Artif. Intell. 20(4), 609–628 (2006)CrossRefGoogle Scholar
  18. 18.
    Cheng, Y., Xue, D., Li, Y.: A fast mosaic approach for remote sensing images. In: International Conference on Mechatronics and Automation (ICMA), pp. 2009–2013, Aug 2007Google Scholar
  19. 19.
    Garcia, R., Nicosevici, T., Cufi, X.: On the way to solve lighting problems in underwater imaging. In: Proceedings of the MTS/IEEE OCEANS Conference, vol. 2, pp. 1018–1024, Oct 2002Google Scholar
  20. 20.
    Rzhanov, Y., Gu, F.: Enhancement of underwater videomosaics for post-processing. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 1–6, Oct 2007Google Scholar
  21. 21.
    Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcia, R.: Large-area photo-mosaics using global alignment and navigation data. In: Proceedings of the IEEE OCEANS Conference, pp. 1–9, Oct 2007Google Scholar
  22. 22.
    Elibol, A., Garcia, R., Delaunoy, O., Gracias, N.: A new global alignment method for feature based image mosaicing. In: Proceedings of the International Symposium on Advances in Visual Computing (ISVC), Part II. SpringerVerlag, Berlin, Heidelberg, pp. 257–266 (2008)Google Scholar
  23. 23.
    Elibol, A., Gracias, N., Garcia, R.: Augmented state-extended kalman filter combined framework for topology estimation in large-area underwater mapping. J. Field Robot. 27(5), 656–674 (2010)CrossRefGoogle Scholar
  24. 24.
    Elibol, A., Garcia, R., Gracias, N.: A new global alignment approach for underwater optical mapping. Ocean Eng. 38(10), 1207–1219 (2011)CrossRefGoogle Scholar
  25. 25.
    Shao, B., Jaffe, J.S., Chachisvilis, M., Esener, S.C.: Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements. Opt. Express 14(25), 12473–12484 (2006)CrossRefGoogle Scholar
  26. 26.
    Barreyre, T., Escartin, J., Garcia, R., Cannat, M., Mittelstaedt, E., Prados, R.: Structure, temporal evolution, and heat flux estimates from a deep-sea hydrothermal field derived from seafloor image mosaics. Geochem. Geophys. Geosyst. 13(4), 1–29 (2012)CrossRefGoogle Scholar
  27. 27.
    Mittelstaedt, E., Escartin, J., Gracias, N., Olive, J.A., Barreyre, T., Davaille, A., Cannat, M., Garcia, R.: Quantifying diffuse and discrete venting at the Tour Eiffel vent site, lucky strike hydrothermal field. Geochem. Geophys. Geosyst. 13(4), 1–18 (2012). ISSN: 1525-2027. doi: 10.1029/2011GC003991 Google Scholar
  28. 28.
    Brown, J.F.: Br. J. Photogr. (1985)Google Scholar
  29. 29.
    Starr, C., Evers, C.A., Starr, L.: Biology: Concepts and Applications. Brooks/Cole, Belmont (2010)Google Scholar
  30. 30.
    Wozniak, B., Dera, J.: Light Absorption in Sea Water. Atmospheric and Oceanographic Sciences Library, vol. 33. Springer, New York (2007)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ricard Prados
    • 1
    Email author
  • Rafael Garcia
    • 1
  • László Neumann
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations