Skip to main content

Abstract

Particle Swarm Optimization (PSO) algorithms are nature-inspired population-based metaheuristic algorithms originally accredited to Eberhart, Kennedy and Shi [1, 2]. The algorithms mimic the social behavior of birds flocking and fishes schooling. Starting form a randomly distributed set of particles (potential solutions), the algorithms try to improve the solutions according to a quality measure (fitness function). The improvisation is preformed through moving the particles around the search space by means of a set of simple mathematical expressions which model some inter-particle communications. These mathematical expressions, in their simplest and most basic form, suggest the movement of each particle towards its own best experienced position and the swarm’s best position so far, along with some random perturbations. There is an abundance of different variants using different updating rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948

    Google Scholar 

  2. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE World congress on computational intelligence. In: The 1998 I.E. international conference on evolutionary computation, pp 69–73

    Google Scholar 

  3. Reeves WT (1983) Particle systems – a technique for modeling a class of fuzzy objects. ACM Trans Graph 2(2):91–108

    Article  Google Scholar 

  4. Renolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21(4):25–34 (Proc SIGGRAPH ’87)

    Google Scholar 

  5. Millonas MM (1993) Swarms, phase transitions, and collective intelligence. In: Langton CG (ed) Proceedings of ALIFE III. Addison-Wesley, Santa Fe Institute

    Google Scholar 

  6. Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In: Krasner S (ed) The ubiquity of chaos. AAAS Publications, Washington, DC

    Google Scholar 

  7. Eberhart RC, Simpson P, Dobbins R (1996) Computational intelligence PC tools, Chapter 6. AP Professional, San Diego, CA, pp 212–226

    Google Scholar 

  8. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the congress on evolutionary computation, pp 73–79

    Google Scholar 

  9. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of IEEE congress evolutionary computation, San Diego, CA, pp 84–88

    Google Scholar 

  10. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings I999 ICEC, Washington, DC, 1951–1957

    Google Scholar 

  11. Bui LT, Soliman O, Abass HS (2007) A modified strategy for the constriction factor in particle swarm optimization. In: Randall M, Abass HS, Wiles J (eds) Lecture Notes in Artificial Intelligence 4828, pp 333–344

    Google Scholar 

  12. Kennedy J (2006) Swarm intelligence. In Handbook of Nature-Inspired and Innovative Computing, Springer, 187-219

    Google Scholar 

  13. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, UK

    Book  Google Scholar 

  14. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Proceedings of evolutionary programming VII (EP98), pp 591–600

    Google Scholar 

  15. Carlisle A, Dozier G (2001) An off-the-shelf PSO. In: Proceedings of workshop on particle swarm optimization, Indianapolis, IN

    Google Scholar 

  16. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform Proc Lett 85:317–325

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang L, Yu H, Hu S (2005) Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 6A(6):528–534

    Article  Google Scholar 

  18. Pedersen MEH (2010) Good parameters for particle swarm optimization. Hvass Laboratories Technical Report HL1001

    Google Scholar 

  19. Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight strategies in particle swarm optimization. In: IEEE 3rd world congress on nature and biologically inspired computing (NaBIC 2011), Salamanca, Spain, pp 640–647

  20. Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-adaptive learning based particle swarm optimization. Inform Sci 181(20):4515–4538

    Article  MATH  MathSciNet  Google Scholar 

  21. Angeline PJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance difference. In: Proceedings of 7th annual conference on evolutionary programming, p 601

    Google Scholar 

  22. Zhao Y, Zub W, Zeng H (2009) A modified particle swarm optimization via particle visual modeling analysis. Comput Math Appl 57:2022–2029

    Article  MATH  MathSciNet  Google Scholar 

  23. van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer. In: Proceedings of IEEE conference on systems, man and cybernetics, Hammamet, Tunisia

    Google Scholar 

  24. Krink T, Vestertroem JS, Riget J (2002) Particle swarm optimization with spatial particle extension. Proceedings of the IEEE congress on evolutionary computation (CEC 2002), Honolulu, Hawaii

    Google Scholar 

  25. Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer–the ARPSO. EVALife technical report no 2002–2002

    Google Scholar 

  26. Silva A, Neves A, Costa E (2002) An empirical comparison of particle swarm and predator prey optimization. In: Proceedings of the 13th Irish international conference on artificial intelligence and cognitive science, vol 2464, pp 103–110

    Google Scholar 

  27. Jie J, Zeng J, Han CZ (2006) Adaptive particle swarm optimization with feedback control of diversity. In: Proceedings of the 2006 international conference on computational intelligence and bioinformatics (ICIC’06), vol Part III, pp 81–92

    Google Scholar 

  28. Kaveh A, Zolghadr A (2013) A democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 42(3):10–21

    Google Scholar 

  29. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evolut Comput 8(3):204–210

    Article  Google Scholar 

  30. Matsushita H, Nishio Y (2009) Network-structured particle swarm optimizer with various topology and its behaviors. Advances in self-organizing maps. Lecture Notes in Computer Science 5629:163–171

    Google Scholar 

  31. Monson CK, Seppi KD (2005) Exposing origin-seeking bias in PSO. In: Proceedings of the conference on genetic and evolutionary computation (GECCO’05), Washington DC, USA, pp 241–248

    Google Scholar 

  32. Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC 1998), Anchorage, Alaska, USA

    Google Scholar 

  33. Gehlhaar DK, Fogel DB (1996) Tuning evolutionary programming for conformationally flexible molecular docking. In: Evolutionary Programming, pp 419–429

    Google Scholar 

  34. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter Optimization. Nanyang Technological University, Singapore

    Google Scholar 

  35. Clerc M (2006) Particle swarm optimization. Antony Rowe, Chippenham, Wiltshire

    Book  MATH  Google Scholar 

  36. Wilke DN, Kok S, Groenwold AA (2007) Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance. Int J Numer Methods Eng 70:985–1008

    Article  MATH  MathSciNet  Google Scholar 

  37. Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8:541–564

    Article  Google Scholar 

  38. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124

    Article  MATH  MathSciNet  Google Scholar 

  39. Černý V (1985) Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J Optim Theory Appl 45:41–51

    Article  MATH  MathSciNet  Google Scholar 

  40. Locatelli M (1996) Convergence properties of simulated annealing for continuous global optimization. J Appl Probability 33:1127–1140

    Article  MATH  MathSciNet  Google Scholar 

  41. Shieh HL, Kuo CC, Chiang CM (2011) Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl Math Comput 218:4365–4383

    Article  MATH  Google Scholar 

  42. Glover F (1989) Tabu Search - Part 1. ORSA J Comput 1(2):190–206

    Article  MATH  Google Scholar 

  43. Glover F (1990) Tabu Search - Part 2. ORSA J Comput 2(1):4–32

    Article  MATH  Google Scholar 

  44. Shen Q, Shi WM, Kong W (2008) Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Comput Bio Chemist 32:53–60

    Article  MATH  Google Scholar 

  45. Løvberg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimiser with breeding and subpopulations. In: Proceedings of the genetic and evolutionary computation conference, pp 469–476

    Google Scholar 

  46. Krink T, Løvbjerg M (2002) The lifecycle model: combining particle swarm optimization, genetic algorithms and hillclimbers. In: Proceedings of parallel problem solving from nature VII (PPSN 2002). Lecture Notes in Computer Science (LNCS) 2439: 621–630

    Google Scholar 

  47. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87(56):267–283

    Article  Google Scholar 

  48. Dorigo M (1992) Optimization, learning and natural algorithms (in Italian), PhD Thesis. Dipartimento di Elettronica, Politecnico di Milano, IT

    Google Scholar 

  49. Geem ZW, Kim J-H, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  50. Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation. In: Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, IN, USA, pp 72–79

    Google Scholar 

  51. Juang C-F (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern – Part B: Cybern 34(2):997–1006

    Article  Google Scholar 

  52. Kaveh A, Talatahari S (2011) Hybrid charged system search and particle swarm optimization for engineering design problems. Eng Comput 28(4):423–440

    Article  MATH  Google Scholar 

  53. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  54. Liu H, Abraham A (2005) Fuzzy adaptive turbulent particle swarm optimization. In: Proceedings of 5th international conference on hybrid intelligent systems (HIS’05), Rio de Janeiro, Brazil, 6–9 November

    Google Scholar 

  55. Zahara E, Kao YT (2009) Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36:3880–3886

    Article  Google Scholar 

  56. Qian X, Cao M, Su Z, Chen J (2012) A hybrid particle swarm optimization (PSO)-simplex algorithm for damage identification of delaminated beams. Math Prob Eng:11 (Article ID 607418)

    Google Scholar 

  57. Kaveh A, Talatahari S (2007) A discrete particle swarm ant colony optimization for design of steel frames. Asian J Civil Eng 9(6):563–575

    Google Scholar 

  58. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the conference on systems, man and cybernetics, Piscataway, New Jersey, pp 4104–4109

    Google Scholar 

  59. Chen WN, Zhang J, Chung HSH, Zhong WL, Wu WG, Shi Y (2010) A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput 14(2):278–300

    Article  Google Scholar 

  60. Gomes MH (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38:957–968

    Article  Google Scholar 

  61. Grandhi RV, Venkayya VB (1988) Structural optimization with frequency constraints. AIAA J 26:858–866

    Article  MATH  MathSciNet  Google Scholar 

  62. Sedaghati R, Suleman A, Tabarrok B (2002) Structural optimization with frequency constraints using finite element force method. AIAA J 40:382–388

    Article  Google Scholar 

  63. Wang D, Zha WH, Jiang JS (2004) Truss optimization on shape and sizing with frequency constraints. AIAA J 42:1452–1456

    Google Scholar 

  64. Lingyun W, Mei Z, Guangming W, Guang M (2005) Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. J Comput Mech 25:361–368

    Article  Google Scholar 

  65. Kaveh A, Zolghadr A (2011) Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J Civil Eng 12:487–509

    Google Scholar 

  66. Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability. Comput Struct 102–103:14–27

    Article  Google Scholar 

  67. Lin JH, Chen WY, Yu YS (1982) Structural optimization on geometrical configuration and element sizing with static and dynamic constraints. Comput Struct 15:507–515

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaveh, A. (2014). Particle Swarm Optimization. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-05549-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05549-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05548-0

  • Online ISBN: 978-3-319-05549-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics