Advertisement

Longitudinal CFA

  • Mark Stemmler
Chapter
  • 926 Downloads
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

This chapter explains how to use CFA with longitudinal data. Different ways of rearranging the information with the longitudinal data are introduced. First, the analysis of first differences is demonstrated by simply looking at increases or decreases between two time points. Secondly, CFA and visual shape patterning are explained. Here the shape of the curve are used as categories or patterns. Furthermore, a test of marginal homogeneity is provided which tests the null hypothesis of the homogeneity of marginals in a square contingency table. Moreover, a special type, the discrimination type is described. This type differentiates significantly between two independent samples.

Keywords

Visual Shape Exact Binomial Test Marginal Homogeneity Discrimination Type Bonferroni Adjusted Alpha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Krauth, J. (1973). Nichtparametrische Ansätze zur Auswertung von Verlaufskurven [Non-parametrical approaches to the analysis of curves]. Biometrical Journal, 15, 557–566.zbMATHMathSciNetGoogle Scholar
  2. Krauth, J. (1993). Einführung in die Konfigurationsfrequenzanalyse [Introduction to configural frequency analysis]. Weinheim, Germany: Beltz-Verlag.Google Scholar
  3. Lautsch, E., & von Weber, S. (1995). Methoden und Anwendungen der Konfigurationsfrequenzanalyse (KFA) [Methods and applications of configural frequency analysis]. Weinheim, Germany: Beltz/Psychologie Verlags Union.Google Scholar
  4. Lehmacher, W. (1980). Simultaneous sign tests for marginal homogeneity of square contingency tables. Biometrical Journal, 22(8), 795–798.CrossRefMathSciNetGoogle Scholar
  5. Lienert, G. A. (1978). Verteilungsfreie Methoden in der Biostatistik (Band II) [Non-parametrical methods in the field of biometrics (Vol. II)]. Meisenheim am Glan, Germany: Hain.Google Scholar
  6. Müller, M. J., Netter, P., & von Eye, A. (1997). Catecholamine response curves of male hypertensives identified by Lehmacher’s two sample configural frequency analysis. Biometrical Journal, 39, 29–38.CrossRefzbMATHGoogle Scholar
  7. Stemmler, M. (1998). Nonparametrical analysis of change patterns in dependent samples. Methods of Psychological Research Online, 3(29), 23–36.Google Scholar
  8. von Eye, A. (1990). Introduction to configural frequency analysis: The search for types and antitypes in cross-classifications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  9. von Eye, A. (2002). Configural frequency analysis: Methods, models and applications. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mark Stemmler
    • 1
  1. 1.Institute of PsychologyFriedrich-Alexander University of Erlangen-Nuremberg (FAU)ErlangenGermany

Personalised recommendations