Computations by Means of Drawings

  • Danilo CapecchiEmail author
  • Giuseppe Ruta
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 52)


The second half of the 19th century saw a very quick diffusion of graphical statics. Lectures on graphical statics were given in Switzerland (Zurich); in Germany (Berlin, Munich, Darmstadt, Dresden); in the Baltic regions (Riga); in the Austrian-Hungarian empire (Vienna, Prague, Gratz, Brunn); in the United States; in Denmark. The author that mainly developed its techniques was the German scholar Carl Culmann, who placed graphical statics besides the newborn projective geometry. Culmann’s approach was enthusiastically followed in Italy, where, first in Milan at the Higher technical institute, then, after 1870, in many Schools of application for engineers, among which those of Padua, Naples, Turin, Bologna, Palermo, Rome, and, eventually, also in the universities of Pisa and Pavia, courses of graphical statics were activated. The Italian scholar who collected Culmann’s inheritance, and extended it, was Luigi Cremona.


Graphical Static Projective Geometry Plane Figure Mechanical Interpretation Resultant Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bauschinger J (1871) Element der graphischen statik. Roldenbourg, MunichGoogle Scholar
  2. 2.
    Burali-Forti C, Marcolongo R (1909) Elementi di calcolo vettoriale: con numerose applicazioni alla geometria alla meccanica e alla fisica-matematica. Zanichelli, BolognazbMATHGoogle Scholar
  3. 3.
    Bellavitis G (1835) Saggio di applicazioni di un nuovo metodo di geometria analitica (Calcolo delle equipollenze). Ann delle Sci del Regno Lombardo-Veneto 5:244–250Google Scholar
  4. 4.
    Belluzzi O (1941) Scienza delle costruzioni (4 vols). Zanichelli, BolognaGoogle Scholar
  5. 5.
    Caparrini S (2009) Early theory of vectors. In: Becchi A et al (eds) Essay in the history of mechanics. Birkhäuser, Basel, pp 179–198Google Scholar
  6. 6.
    Capecchi D (2012) Historical roots of the rule of composition of forces. Meccanica 47(8):1887–1901CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Capecchi D (2012) History of virtual work laws. Birkhäuser, MilanCrossRefGoogle Scholar
  8. 8.
    Capecchi D, Drago A (2005) On Lagrange’s history of mechanics. Meccanica 40:19–33CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Capecchi D, Ruta G (2014) Polytechnic schools in the 19th century Europe. The polytechnic school in Karlsruhe. Meccanica 49:13–21Google Scholar
  10. 10.
    Chasles M (1875) Aperçu historique sur l’origine et le développement des méthodes en géométrie (2 édition). Gauthier Villars, ParisGoogle Scholar
  11. 11.
    Drago A (2011) The birth of the non-Euclidean geometries as the more significant crisis in the foundations of modern mathematics. Logic Philos Sci 9(1):103–110Google Scholar
  12. 12.
    Clerk Maxwell J (1864) On the calculation of the equilibrium and stiffness of frames. Philos Mag 27:294–299Google Scholar
  13. 13.
    Clerk Maxwell J (1864) On reciprocal figures and diagrams of forces. Philos Mag 27:250–261Google Scholar
  14. 14.
    Clerk Maxwell J (1872) On reciprocal figures, frames, and diagrams of forces (1870). Proc Roy Soc Edinb 7:53–56Google Scholar
  15. 15.
    Clerk Maxwell J (1873) A treatise on electricity and magnetism (2 vols). Clarendon, OxfordGoogle Scholar
  16. 16.
    Cotterill JH (1884) Applied mechanics. Macmillan, LondonGoogle Scholar
  17. 17.
    Cournot A (1828) Sur la théorie des pressions. Bull de Férussac 9:10–22Google Scholar
  18. 18.
    Cousinery BE (1828) Géométrie perspective ou principes de projection polaire appliqués à description des corps. Carilian-Goeury, ParisGoogle Scholar
  19. 19.
    Cousinery BE (1839) Le calcul par le trait—ses éléments et ses applications. Carilian-Goeury et Dalmont, ParisGoogle Scholar
  20. 20.
    Cremona L (1914–1917) Opere Matematiche (3 vols). Hoepli, MilanGoogle Scholar
  21. 21.
    Cremona L (1868–1869) Lezioni di statica grafica. Regio stabilimento Roncih, MilanGoogle Scholar
  22. 22.
    Cremona L (1872) Le figure reciproche nella statica grafica. In: Cremona L (1914–1917) Opere matematiche (3 vols). Hoepli, Milan, pp 336–366Google Scholar
  23. 23.
    Cremona L (1873) Elementi di geometria proiettiva. Paravia, RomeGoogle Scholar
  24. 24.
    Cremona L (1875) Élements géométrie projective. Gauthier Villars, ParisGoogle Scholar
  25. 25.
    Cremona L (1885) Elements of projective geometry. Clarendon, OxfordGoogle Scholar
  26. 26.
    Cremona L (1885a) Les figures réciproques en statique graphique. Gauthier-Villars, ParisGoogle Scholar
  27. 27.
    Crowe MJ (1967) A history of vector analysis. Dover, New YorkzbMATHGoogle Scholar
  28. 28.
    Culmann C (1866) Die graphische Statik. Meyer und Zeller, ZürichGoogle Scholar
  29. 29.
    Culmann C (1880) Traité de statique graphique. Dunod, ParisGoogle Scholar
  30. 30.
    Curioni G (1864–1884) L’arte di Fabbricare. Ossia corso completo di istituzioni teoriche pratiche per ingegneri (6 vols and 5 appendixes). Negro, TurinGoogle Scholar
  31. 31.
    Enriques F (1898) Lezioni di geometria proiettiva. Zanichelli, BolognaGoogle Scholar
  32. 32.
    Favaro A (1877) Lezioni di statica grafica (1873). Sacchetto, PaduaGoogle Scholar
  33. 33.
    Favaro A (1879) Leçons de statique graphique. Gauthier-Villars, ParisGoogle Scholar
  34. 34.
    Fleming Jenkin HC (1869) On practical applications of reciprocal figures to the calculation of strains on frameworks. Trans Roy Soc Edinb 25:441–447CrossRefGoogle Scholar
  35. 35.
    Gerhart R, Kurrer KE, Pichler G (2003) The methods of graphical statics and their relation to the structural form. In: Proceedings of first international congress on construction history, Madrid, pp 997–1006Google Scholar
  36. 36.
    Ghisalberti AM (1960–) Dizionario biografico degli italiani. Istituto enciclopedia italiana, RomeGoogle Scholar
  37. 37.
    Gibbs JW (1881) Elements of vector analysis. Published in private form at New Haven into two parts; the former in 1881, the latter in 1884Google Scholar
  38. 38.
    Girard PS (1798) Traité analytique de la resistance des solides et des solides d’égale résistance. Didot, ParisGoogle Scholar
  39. 39.
    Giulio I (1841) Expérience sur la résistence des fers forgés dont on fait le plus d’usage en Piémont. Mem della Reale Accad delle Sci di Torino, s 2, 3:175–223Google Scholar
  40. 40.
    Giulio I (1841) Expérience sur la force et sur l’élasticité des fils de fer. Mem della Reale Accad delle Sci di Torino, s 2, 3:275–434Google Scholar
  41. 41.
    Giulio I (1842) Sur la torsion des fils métallique et sur l’élasticité des ressort en hélice. Mem della Reale Accad delle Sci di Torino, s 2, 4(1):329–383Google Scholar
  42. 42.
    Giuntini A (2001) Il paese che si muove. Le ferrovie in Italia tra ’800 e ’900. Franco Angeli, MilanGoogle Scholar
  43. 43.
    Grassmann HG (1844) Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine neue Disziplin dargestellt und durch Anwendungen erläutert. In: Erster Theil: die lineale Ausdehnungslehre enthaltend. von Otto Wigand, LeipzigGoogle Scholar
  44. 44.
    Grassmann HG (1855) Sur les différents genres de multiplication. Crelles J 49:123–141CrossRefzbMATHGoogle Scholar
  45. 45.
    Grassmann HG (1862) Die Ausdehnungslehre. Vollständig und in strenger Form bearbeitet. Verlag von Th. Chr. Fr. Enslin, BerlinGoogle Scholar
  46. 46.
    Green G (1827) An essay of the application of the mathematical analysis to the theories of electricity and Magnetism. Green G (1871) Mathematical papers. McMillan, London, pp 1–82Google Scholar
  47. 47.
    Hamilton WR (1847) On quaternions (1844). Proc Roy Ir Acad 3(1–16):273–292Google Scholar
  48. 48.
    Hamilton WR (1853) Lecture on quaternions. University Press, DublinGoogle Scholar
  49. 49.
    Hamilton WR (1854–1855) On some extensions of quaternions. Philos Mag Ser 4 7:492–499; 8:125–137, 261–269; 9:46–51, 280–290Google Scholar
  50. 50.
    Heaviside O (1893–1912) Electromagnetic theory (3 vols). The Electrician Publishing Company, LondonGoogle Scholar
  51. 51.
    Hellinger E (1914) Die allgemeinen Ansätze der Mechanik der Kontinua. Enzyklopädie der mathematischen Wissenschaften. Teubner BG, Leipzig, Bd. IV/4, pp 602–694Google Scholar
  52. 52.
    Hooke R (1678) Lectures de potentia restitutiva or Of spring explaining the power of springing bodies. John Martyn, LondonGoogle Scholar
  53. 53.
    Jung C (1890) Appunti al corso di statica grafica presi dagli allievi Tullio Imbrico e Enrico Bas. Luigi Ferrari, MilanGoogle Scholar
  54. 54.
    Lamé G, Clapeyron EBP (1827) Mémoire sur les polygones funiculaires. J des Voies de Commun Saint-Petersbourg 1:43–56Google Scholar
  55. 55.
    Lamé G (1852) Leçons sur la théorie mathématique de l’élasticité des corps solides. Bachelier, Paris 1852Google Scholar
  56. 56.
    Lamé G (1859) Leçons sur les coordonnées curvilignes et leurs diverses applications. Bachelier, ParisGoogle Scholar
  57. 57.
    Lehmann C, Maurer B (2005) Karl Culmann und die graphische Statik–Zeichnen, die Sprache des Ingenieurs. Ernst & Sohn, BerlinGoogle Scholar
  58. 58.
    Levi Civita T, Amaldi U (1930) Lezioni di meccanica razionale. Zanichelli, BolognazbMATHGoogle Scholar
  59. 59.
    Lévy M (1886–1888) La statique graphique et ses applications aux constructions (1874) (4 vols). Gauthier-Villars, ParisGoogle Scholar
  60. 60.
    Mach E (1883) Die Mechanik in ihrer Entwickelung. Brockhaus FA, LeipzigGoogle Scholar
  61. 61.
    Möbius AF (1827) Der barycentrische calculus, ein neues Hülfsmittel zur analytischen Behandlung der Geometrie. Barth JA, LeipzigGoogle Scholar
  62. 62.
    Möbius AF (1837) Lehrbuch der Statik. Göschen, LeipzigGoogle Scholar
  63. 63.
    Mohr O (1860–1868) Beitrag zur Theorie der Holz und Eisen-Konstruktionen. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover, vol 6 (1860), col 323 et seq, 407 et seq; vol 8 (1862), col 245 et seq; vol 14 (1868) col 19 et seqGoogle Scholar
  64. 64.
    Mohr O (1872) Über die Darstellung des Spannungszustandes und des Deformationszustandes eines Körperelementes und über die Anwendung derselben in der Festigkeitslehre. Der Civilingenieur 28:113–156Google Scholar
  65. 65.
    Mohr O (1874) Beitrag zur Theorie der Bogenfachwerksträger. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover, 20:223 et seqGoogle Scholar
  66. 66.
    Mohr O (1874) Beitrag zur Theorie des Fachwerks. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover, 20:509 et seqGoogle Scholar
  67. 67.
    Mohr O (1875) Beitrag zur Theorie des Fachwerks. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover 21:17–38Google Scholar
  68. 68.
    Mohr O (1881) Beitrag zur Theorie des Bogenfachwerks. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover 27:243 et seqGoogle Scholar
  69. 69.
    Poncelet JV (1840) Mémoire sur la stabilité des revêtements et leurs fundations. Mémorial de l’Officier du Génie 13:7–270Google Scholar
  70. 70.
    Pouchet LE (1797) Métereologie terrestre ou table des nouveaux poids, mesures et monnaies de France etc. Guilbert et Herment, RouenGoogle Scholar
  71. 71.
    Rankine WJM (1858) A manual of applied mechanics. Griffin, LondonGoogle Scholar
  72. 72.
    Saviotti C (1888) La statica grafica (3 vols). Hoepli, MilanGoogle Scholar
  73. 73.
    Signorini A (1930a) Sulle deformazioni finite dei sistemi continui. Rend della Reale Accad dei Lincei 6(12):312–316Google Scholar
  74. 74.
    Signorini A (1952) Meccanica razionale con elementi di statica grafica. Società tipografica Leonardo da Vinci, Città di CastellozbMATHGoogle Scholar
  75. 75.
    Staudt KGF von (1856) Beiträge zur Geometrie der Lage. Verlag von Bauer und Raspe, NürnbergGoogle Scholar
  76. 76.
    Stevin S (1586) De Beghinselen der Weeghconst. Plantijn, LeydenGoogle Scholar
  77. 77.
    Stevin S (1605) Tomus quartus mathematicorum hypomnematum de statica. Patii I, LeidenGoogle Scholar
  78. 78.
    Stevin S (1634) Les oeuvres mathematiques de Simon Stevin, par Albert Girard. Elsevier, LeidenGoogle Scholar
  79. 79.
    Timoshenko SP (1953) History of strength of materials. McGraw-Hill, New YorkGoogle Scholar
  80. 80.
    Varignon P (1687) Projet d’une nouvelle mechanique avec un examen de l’opinion de M. Borelli, sur les propriétes des poids suspendus par des cordes. Veuve d’Edme Martin, Boudot J, Martin E, ParisGoogle Scholar
  81. 81.
    Varignon P (1725) Nouvelle mécanique ou statique (2 vols). Claude Jombert, ParisGoogle Scholar
  82. 82.
    Veronese G (1903) Commemorazione del Socio Luigi Cremona. Rend della Reale Accad dei Lincei 5(12):664–678Google Scholar
  83. 83.
    Viola T (1932) Sui diagrammi reciproci del Cremona. Ann di Mat Pura ed Appl 10:167–172CrossRefMathSciNetGoogle Scholar
  84. 84.
    Zucchetti F (1878) Statica grafica: sua teoria ed applicazioni con tavole illustrative per l’ingegnere. Negro, TurinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipt di Ingegneria Strut. e GeotecnicaUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations