Skip to main content

The Mathematicians of the Risorgimento

  • Chapter
  • First Online:
  • 1479 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 52))

Abstract

The constituting phase of the Kingdom of Italy was a time of recovery of mathematical studies. The political unity facilitated the inclusion of Italian mathematicians in the context of European research, in particular the German one. The internationalization of Italian mathematics is customarily associated with a trip taken in 1858 by some young mathematicians including Francesco Brioschi, Enrico Betti and Felice Casorati in Europe. In a few years we assist in the development of some schools that will maintain their role even in the 20th century. Among them, those promoted by Enrico Betti and Eugenio Beltrami were undoubtedly the most important. In this chapter we present briefly the contribution of two of the leading pioneers and their students.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    p.   230. In fact there was already a first founding of Scuola normale by Napoleon in 1813, along the lines of the French Écoles.

  2. 2.

    Witnessed by a letter of August 25th, 1847 of Mossotti, who from Viareggio, dissuaded Betti from pursuing his initial interest in descriptive geometry [24], p. 231.

  3. 3.

    Curtatone and Montanara are two places near Mantua where in 1848 important battles against the Austrian army were fought and lost by Italian volunteers.

  4. 4.

    p. 233.

  5. 5.

    Georg Friedrich Bernhard Riemann (Breselenz 1826-Selasca 1866) was a German mathematician and physicist. He grew up in poverty, which interfered with his education. He moved to Lüneburg to study and found a friend in his instructor Schmalfuss who gave him free access to his private library. Thus he was able to read the books of Gauss and Legendre. Riemann left Lüneburg and, after a year spent at the university of Göttingen, in 1847, moved to Berlin. Here he was in contact with some of the most prominent German mathematicians of the time, and he studied inter alia Jacobi’s and Dirichlet’s papers. He returned to Göttingen to finish his graduate work; his first argument went back to 1851 and concerned a new theory of functions of a complex variable, a nascent branch of mathematics at that time, that thanks to his contribution received a major boost. In 1854 he read for his qualification for teaching, his second thesis, entitled Über die Hypothesen, welche der Geometrie zu Grunde liegen, published posthumously in 1867 which introduced the concepts of variety and curvature of a manifold, in non-Euclidean spaces.

  6. 6.

    The proposal of Betti and Riemann’s rejection are documented in some letters referred to in [24].

  7. 7.

    pp. 283–290.

  8. 8.

    Betti’s biography is taken from [52]. More details about the scientific aspects of the work of Betti can be found in [28].

  9. 9.

    p. 161.

  10. 10.

    p. 163. Our translation.

  11. 11.

    p. 45. Our translation.

  12. 12.

    p. 179. Our translation.

  13. 13.

    Betti knew that, if desired, he could rewrite all the ‘less rigorous’ steps developed with the use of infinitesimals with a strict mathematics.

  14. 14.

    p. 3. From now on the quotations from the Teoria della elasticità by Betti refer to the offprint by Soldaini of 1874 [20].

  15. 15.

    p. 391.

  16. 16.

    p. 18. Let \( E\) be the tensor of deformation, \(\Theta \) and \(\Lambda \) are respectively the trace of \(E\) and \( E^2\).

  17. 17.

    p. 253. The tilde distinguishes the two Lamé constants from Betti’s \(\mathrm{{\lambda }}\) and \({\upmu }\).

  18. 18.

    p. 20. Our translation.

  19. 19.

    p. 22.

  20. 20.

    p. 40. Our translation.

  21. 21.

    p. 381.

  22. 22.

    p. 379 Our translation.

  23. 23.

    In [53] Green enounced a more general theorem than (3.14), today known as the second Green’s identity:

    $$\begin{aligned} \int _{{{\upsigma }}} v\frac{\partial u}{\partial n}d{\upsigma }+\int _{{S}} u\triangle v\;dS=\int _{{{\upsigma }}} u\frac{\partial v}{\partial n} d{\upsigma }+\int _{{S}} v\triangle u\; dS. \end{aligned}$$

    Functions \(u\) and \(v\) are (whatever their form) endowed with the necessary conditions of regularity ([53], p. 23, par. 3, not numbered equation); by imposing that \(u\) and \(v\) be harmonic functions the Eq. (3.14) is obtained, not made explicit by Green.

  24. 24.

    Equations 32–33, pp. 33–34.

  25. 25.

    Green’s integral formula provides the function \(v\), solution of (3.14), at a point \(P\) internal to \(S\) starting from the knowledge of \(v\) on \({\upsigma }\). On the basis of the (3.15) it is given by:

    $$\begin{aligned} v=\frac{1}{4{\uppi }}\int _{{{\upsigma }}}\overline{v}\frac{\partial }{\partial n}\left( v'+\frac{1}{r}\right) \; d{\upsigma }. \end{aligned}$$

    Here \(r\) is the distance of \(P\) from the points \(Q\) of \({\upsigma }\). The function \(v'(P,Q)\), sometimes called a Green function, satisfies Laplace’s equation and is such that \(u =(v'+1/r)=0\) on \({\upsigma }\) [53], p. 29. More frequently, one calls the whole expression \(u\) a Green function. Among the authors which individuate in \(v'\) Green’s function to signal Betti, Rudolf Otto Sigmund Lipschitz, and Carl Neumann. Green seems to prefer the use of the function \(u\) [53], p. 31, § 5, Eq. 5.

  26. 26.

    p. 297.

  27. 27.

    Equation 43, p. 55.

  28. 28.

    Equation 45, p. 56–57

  29. 29.

    p. 62.

  30. 30.

    p. 63.

  31. 31.

    Equation 48. p. 63.

  32. 32.

    Betti’s passages contain many typos, partially emended in the Opere, edited by da Orazio Tedone.

  33. 33.

    pp. 79–80.

  34. 34.

    Equation 56, p. 81.

  35. 35.

    p. 81.

  36. 36.

    p. 83.

  37. 37.

    Equation 59, p. 84.

  38. 38.

    This is done in all groups of the not numbered equations enclosed among the (59) and (60) of the Chap. 10. The first group represents the linear elastic homogeneous and isotropic relationship between the components of stress and the partial derivatives of the components of the displacement, the second group expresses the local equations of static equilibrium, the third group characterizes the components of the normal (oriented toward the interior according to the convention in the 19th century) to the outer surface of the cylinder, and the fourth group expresses the boundary conditions on the specialized components of the normal just characterized.

  39. 39.

    Equations 60–62, p. 85.

  40. 40.

    Betti did not use a semi-inverse method based on the so-called hypothesis of Clebsch-Saint-Venant, Eq. (62). The vanishing of the stresses on the plane of the section (today indicated with the symbols \({\upsigma }_x,\,{\upsigma }_y,\,{\uptau }_{xy}\)) is a condition for the auxiliary field of displacement useful to be introduced in the reciprocal theorem.

  41. 41.

    Second not numbered equation after the equation 62, p. 86.

  42. 42.

    A discussion in absolute form in the subject is for example found in [76].

  43. 43.

    Equations 67–69, p. 91.

  44. 44.

    p. 91.

  45. 45.

    p. 91.

  46. 46.

    Equation (70) in Chap. 10.

  47. 47.

    Equations (71) and (72 ) of Chap. 10.

  48. 48.

    Last equation of Chap. 11, p. 91.

  49. 49.

    A college with the aim of promoting studies at the university of Pavia, supporting pupils, chosen on the basis of merit, with logistic and cultural opportunities.

  50. 50.

    It is apparent that Beltrami talked about his stay in Verona.

  51. 51.

    Beltrami said, in Latin, tamquam tabula rasa.

  52. 52.

    Tome 1, p. XI. Our translation.

  53. 53.

    Before getting the permanent position as full professor (Professore ordinario), candidates should undergo a period of apprenticeship, during which they were referred to as professors in charge (Professore straordinario).

  54. 54.

    Tome 1, p. XIII. Our translation.

  55. 55.

    p. 319.

  56. 56.

    The first four postulates of Euclidean geometry are:

    1. 1.

      Let it be postulated to draw a straight line from any point to any point.

    2. 2.

      and to produce a limited straight line in a straight line,

    3. 3.

      and to describe a circle with any center and distance,

    4. 4.

      and right angles are equal to one another [66] (p. 318.)

    Besides the postulates, there are also five common notions:

    1. 1.

      Things equal to the same thing are also equal to one another.

    2. 2.

      And if equals are added to equals, the wholes are equal.

    3. 3.

      And if equals are subtracted from equals the remainders are equal.

    4. 4.

      And things which coincide with one another are equal to one another.

    5. 5.

      And the whole is greater than the part [66] (p. 319.)

  57. 57.

    The angle of parallelism \({\upalpha }\) is the angle that a straight line \(s\) forms with the perpendicular \(p\) to a given straight line \(r\) such that all straight lines forming with \(p\) an angle greater than \({\upalpha }\) do not meet \(r\); in Euclidean geometry, \({\upalpha }={\uppi }/2\).

  58. 58.

    p. 290.

  59. 59.

    Remark that \(Q_1,Q_2,Q_3\) in general depend on \(q_1, q_2, q_3\), even if Beltrami did not state it explicitly.

  60. 60.

    pp. 384–385. Our translation.

  61. 61.

    p. 386.

  62. 62.

    Note by Beltrami: Leçons sur les coordonnées curvilignes, Paris, 1859, p. 272.

  63. 63.

    p. 389. Our translation.

  64. 64.

    p. 398.

  65. 65.

    p. 403. Our translation.

  66. 66.

    p. 170.

  67. 67.

    p. 194.

  68. 68.

    Note by Beltrami: For the proof of the sufficiency of these equations, please look at the note at the end of the present Memoir.

  69. 69.

    p. 195.

  70. 70.

    p. 192.

  71. 71.

    Appendix III.

  72. 72.

    p. 75.

  73. 73.

    They are known as the implicit compatibility equations.

  74. 74.

    Note by Beltrami This most known relation already results from the definition formulas (a): however, for the present scope it was necessary to remark that it is included in the nine integrability condition of which word is here.

  75. 75.

    pp. 221–223. Our translation.

  76. 76.

    p. 327. Our translation.

  77. 77.

    p. 329. Our translation.

  78. 78.

    p. 511. Our translation.

  79. 79.

    p. 512. Our translation.

  80. 80.

    pp. 704–714. Our translation.

  81. 81.

    Journal de l’École Polytecnique, cahier XLVIII (1880), p. 1 (note by Beltrami). The paper is entitled: Sur l’équilibre des surfaces flexibles et inextensibles.

  82. 82.

    pp. 420–421.

  83. 83.

    p. 427.

  84. 84.

    p. 425.

  85. 85.

    p. 427. Our translation.

  86. 86.

    p. 429; Beltrami referred to [3].

  87. 87.

    The average curvature is \(\frac{1}{2}\left( \frac{1}{R_1}+\frac{1}{R_2}\right) \), with \(R_1,R_2\) the radii of curvature in the directions \(u,v\).

  88. 88.

    p. 450. Our translation.

  89. 89.

    p. 453. Our translation.

  90. 90.

    Between parentheses we report the year of their beginning of studies.

  91. 91.

    p. 58. Our translation.

  92. 92.

    p. 43. Our translation.

  93. 93.

    Our translation.

  94. 94.

    “The theory of the so-called distortions developed by prof. Volterra contemplates the stresses developing in a not simply connected body, when, once made a cut that does not interrupt the connection, the edges of the cut itself are subjected to rigid relative displacements, after which the continuity of the material is restored by a suitable addition, or subtraction, of material”. [83], p. 350.

  95. 95.

    A wide bibliography and a comment on Volterra’s papers may be found in [64].

  96. 96.

    p. 154. Our translation.

  97. 97.

    p. 159. Our translation.

  98. 98.

    The proof had already been given by Weingarten in [101].

  99. 99.

    Somigliana proved afterwards that this depends on Volterra’s very strong assumption on deformations, supposed regular up to the second derivative.

  100. 100.

    They are Eq. (3.57).

  101. 101.

    They are the six parameters \(l, m, n, p, q, r\) defining the relation (3.57).

  102. 102.

    We often refer to the characteristics, or parameters, of the distortions as being “distortions”, tout court. On the contrary, to Volterra the distortion is a state of the body, defined by the distortion parameters.

  103. 103.

    pp. 165–167. Our translation.

  104. 104.

    p. 875.

  105. 105.

    p. 1005. Our translation.

  106. 106.

    p. 1015. Our translation.

  107. 107.

    p. 37. Our translation.

  108. 108.

    Somigliana’s most important memoirs on the subject are [83, 84].

  109. 109.

    pp. 350–351. Our translation.

  110. 110.

    Cesaro’s biography is extracted from [52].

  111. 111.

    See, for instance, the textbook by Guidi [56].

  112. 112.

    p. 213. Our translation.

  113. 113.

    In [14], v. 2, pp. 329–334.

References

  1. Beltrami E (1902–1920) Opere matematiche (4 vols). Hoepli, Milan

    Google Scholar 

  2. Beltrami E (1863–1864) Ricerche di analisi applicata alla geometria. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 1. Hoepli, Milan, pp 107–198

    Google Scholar 

  3. Beltrami E (1865) Delle variabili complesse sopra una superficie qualunque. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 1. Hoepli, Milan, pp 318–353

    Google Scholar 

  4. Beltrami E (1868) Saggio di interpretazione della geometria non euclidea. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 1. Hoepli, Milan, pp 374–405

    Google Scholar 

  5. Beltrami E (1880–1882) Sulle equazioni generali della elasticità. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 3. Hoepli, Milan, pp 383–407

    Google Scholar 

  6. Beltrami E (1882) Sull’equilibrio delle superficie flessibili e inestensibili. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 3. Hoepli, Milan, pp 420–464

    Google Scholar 

  7. Beltrami E (1884a) Sulla rappresentazione delle forze newtoniane per mezzo di forze elastiche. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 95–103

    Google Scholar 

  8. Beltrami E (1884b) Sull’uso delle coordinate curvilinee nelle teorie del potenziale e dell’elasticità. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 136–179

    Google Scholar 

  9. Beltrami E (1885) Sulle condizioni di resistenza dei corpi elastici. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 180–189

    Google Scholar 

  10. Beltrami E (1886) Sull’interpretazione meccanica delle formole di Maxwell. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 190–223

    Google Scholar 

  11. Beltrami E (1889) Note fisico matematiche (lettera al prof. Ernesto Cesaro). In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 320–329

    Google Scholar 

  12. Beltrami E (1889b) Sur la théorie de la déformation infiniment petite d’un milieu. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 344–347

    Google Scholar 

  13. Beltrami E (1892) Osservazioni alla nota del prof. Morera. In: Beltrami E (1902–1920) Opere matematiche (4 vols), vol 4. Hoepli, Milan, pp 510–512

    Google Scholar 

  14. Betti E (1903–1913) Opere matematiche (2 vols). Hoepli, Milan

    Google Scholar 

  15. Betti E (1863–1864) Teorica delle forze che agiscono secondo la legge di Newton e sua applicazione alla elettricità statica. In: Betti E (1903–1913) Opere matematiche (2 vols), vol 2. Hoepli, Milan, pp 45–153

    Google Scholar 

  16. Betti E (1867a) Teoria della capillarità. In: Betti E (1903–1913) Opere matematiche (2 vols), vol 2. Hoepli, Milan, pp 179–208

    Google Scholar 

  17. Betti (1867b) Sopra le funzioni sferiche. In: Betti E (1903–1913) Opere matematiche (2 vols), vol 2. Hoepli, Milan, pp 209–205

    Google Scholar 

  18. Betti E (1871) Sopra gli spazi di un numero qualunque di dimensioni. In: Betti E (1903–1913) Opere matematiche (2 vols), vol 2. Hoepli, Milan, pp 273–290

    Google Scholar 

  19. Betti E (1874) Sopra l’equazioni di equilibrio dei corpi solidi elastici. In: Betti E (1903–1913) Opere matematiche (2 vols), vol 2. Hoepli, Milan, pp 379–390

    Google Scholar 

  20. Betti E (1874) Teoria della elasticità (1872–1873). Soldaini, Pisa

    Google Scholar 

  21. Betti E (1876) Lezioni di fisica matematica dell’anno accademico 1876–1877. Betti’s fund at the Scuola Normale di Pisa

    Google Scholar 

  22. Boltzmann L (1874) Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Akad der Wiss Wien 70(2):275–306

    Google Scholar 

  23. Borchardt CW (1873) Über die Transformationen der Elasticitätsgleichung in allgemeine orthogonale Koordinaten. J für die reine und Angew Mathematik 76:4–58

    Google Scholar 

  24. Bottazzini U (1982) Enrico Betti e la formazione della Scuola Matematica Pisana. In: Proceedings of the meeting ‘La storia delle matematiche in Italia’, Cagliari, pp 229–275

    Google Scholar 

  25. Capecchi D, Ruta G (2007) Piola’s contribution to continuum mechanics. Arch Hist Exact Sci 61:303–342

    Google Scholar 

  26. Capecchi D, Ruta G (2011) La scienza delle costruzioni in Italia nell’Ottocento. Springer, Milan

    Book  Google Scholar 

  27. Capecchi D, Ruta G (2014) Polytechnic schools in the 19th century Europe. The polytechnic school in Karlsruhe. Meccanica 49:13–21

    Article  MATH  MathSciNet  Google Scholar 

  28. Capecchi D, Ruta G, Tazzioli R (2006) Enrico Betti. Teoria della elasticità, Hevelius, Benevento

    Google Scholar 

  29. Castigliano A (1879) Théorie des systèmes élastiques et ses applications. Negro, Turin

    Google Scholar 

  30. Cauchy AL (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide élastique ou non élastique. In: Cauchy AL (1882–1974) Oeuvres complètes (27 vols). Gauthier-Villars, Paris, s 2, 8:195–226

    Google Scholar 

  31. Cauchy AL (1828) De la pression ou tension dans un systemè de points matériels. In: Cauchy AL (1882–1974) Oeuvres completès, (27 vols). Gauthier-Villars, Paris, s 2, 8:253–277

    Google Scholar 

  32. Cerruti V (1873) Intorno ai sistemi elastici articolati. Dissertazione presentata alla Commissione Esaminatrice della Real Scuola d’Applicazione per gli Ingegneri in Torino. Bona, Turin

    Google Scholar 

  33. Cerruti V (1875) Sopra un teorema del Sig. Menabrea. Mem della Reale Accad dei Lincei, s 2, 2:570–581

    Google Scholar 

  34. Cerruti V (1876) Intorno ai movimenti non periodici di un sistema di punti materiali. Mem della Reale Accad dei Lincei, s 2, 3:241–249

    Google Scholar 

  35. Cerruti V (1877) Intorno alle piccole oscillazioni di un corpo rigido interamente libero. Mem della Reale Accad dei Lincei, s 3, 1:37–345

    Google Scholar 

  36. Cerruti V (1880) Sulle vibrazioni dei corpi elastici isotropi. Mem della Reale Accad dei Lincei, s 3, 8:361–389

    Google Scholar 

  37. Cerruti V (1883) Ricerche intorno all’equilibrio dei corpi elastici isotropi. Mem della Reale Accad dei Lincei, s 3, 13:81–122

    Google Scholar 

  38. Cerruti V (1890) Sulla deformazione di un involucro sferico isotropo per date forze agenti sulle due superfici limiti. Mem della Reale Accad dei Lincei, s 4, 7:25–44

    Google Scholar 

  39. Cesaro E (1964–1968) Opere scelte (2 vols in 3 tomes). Cremonese, Rome

    Google Scholar 

  40. Cesaro E (1891) Sul calcolo della dilatazione e della rotazione nei mezzi elastici. In Cesaro E (1964–1968) Opere scelte (2 vols in 3 tomes). vol 2. Cremonese, Rome, pp 414–422

    Google Scholar 

  41. Cesaro E (1894) Introduzione alla teoria matematica della elasticità. Bocca, Turin

    Google Scholar 

  42. Cesaro E (1894) Sulle equazioni dell’elasticità negli iperspazi. Rend della Reale Accad dei Lincei 5(3):290–294

    Google Scholar 

  43. Cesaro E (1906) Sul problema dei solidi elastici. In: Cesaro E (1964–1968) Opere scelte (2 vols in 3 tomi), vol 2. Cremonese, Rome, pp 489–497

    Google Scholar 

  44. Cesaro E (1906) Sulle formole del Volterra fondamentali nella teoria delle distorsioni elastiche. In: Cesaro E (1964–1968) Opere scelte (2 vols in 3 toms), vol 2. Cremonese, Rome, pp 498–510

    Google Scholar 

  45. Clebsch RFA (1862) Theorie der Elasticität fester Körper. Teubner BG, Leipzig

    Google Scholar 

  46. Clebsch RFA (1883) Théorie de l’élasticité des corps solides, Traduite par MM. Barré de Saint Venant et Flamant, avec des Notes étendues de M. Barré de Saint Venant. Dunod, Paris

    Google Scholar 

  47. Clerk Maxwell J (1873) A treatise on electricity and magnetism (2 vols). Clarendon, Oxford

    Google Scholar 

  48. Clerk Maxwell J (1864) On the calculation of the equilibrium and stiffness of frames. Philos Mag 27:294–299

    Google Scholar 

  49. Crotti F (1888) La teoria dell’elasticità ne’ suoi principi fondamentali e nelle sue applicazioni pratiche alle costruzioni. Hoepli, Milan

    Google Scholar 

  50. Di Pasquale S (1996) Archi in muratura e distorsioni di Somigliana. In: Di Pasquale S (ed) Problemi inerenti l’analisi e la conservazione del costruito storico. Alfani, Florence

    Google Scholar 

  51. Drago A (2011) The birth of the non-Euclidean geometries as the more significant crisis in the foundations of modern mathematics. Logic Philos Sci 9(1):103–110

    Google Scholar 

  52. Ghisalberti AM (1960-) Dizionario biografico degli italiani. Istituto Enciclopedia Italiana, Rome

    Google Scholar 

  53. Green G (1827) An essay of the application of the mathematical analysis to the theories of electricity and magnetism. In : Green G (1871) Mathematical papers. McMillan, London, pp 1–82

    Google Scholar 

  54. Green G (1839) On the reflection and refraction of light at the common surface of two non-crystallized media. Green G (1871) Mathematical papers. McMillan, London, pp 245–26

    Google Scholar 

  55. Guerraggio A, Paoloni G (2013) Vito Volterra. Translated into English by W Kim, Springer, Berlin

    Book  Google Scholar 

  56. Guidi C (1910) Lezioni sulla scienza delle costruzioni dall’ing. prof. Camillo Guidi nel Real Politecnico di Torino. Bona, Turin

    Google Scholar 

  57. Khan AS, Sujian H (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  58. Kirchhoff GR (1876) Vorlesungen über mathematischen Physik: Mechanik. Teubner, Leipzig

    Google Scholar 

  59. Korn A (1906) Sur un théoreme relatif aux dérivées secondes du potentiel d’un volume attirant. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci 142:199–200

    MATH  Google Scholar 

  60. Lamé G (1859) Leçons sur les coordonnées curvilignes et leurs diverses applications. Bachelier, Paris

    Google Scholar 

  61. Lauricella G (1895) Equilibrio dei corpi elastici isotropi. Ann della Regia Scuola Normale Super di Pisa 7:1–119

    MathSciNet  Google Scholar 

  62. Lauricella G (1909) Sur l’intégration de l’équation relative à l’équilibre des plaques élastiques encastrées. Acta Math 32:201–256

    Article  MATH  MathSciNet  Google Scholar 

  63. Marcolongo R (1902) Teoria matematica dell’elasticità. Reale Università, Messina

    Google Scholar 

  64. Marcolongo R (1907) Progressi e sviluppo della teoria matematica della elasticità in Italia (1870–1907). Nuovo Cimento, s 5, 14:371–410

    Google Scholar 

  65. Michell JH (1900) On the direct determination of stress in an elastic solid, with applications to the theory of plates. Proc Lond Math Soc 31:100–124

    MathSciNet  Google Scholar 

  66. Mueller I (2006) Philosophy of mathematics and deductive structure in Euclid’s elements. Dover, Mineola, New York

    Google Scholar 

  67. Müller-Breslau CH (1886) Die neuren Methoden der Festigkeitslehre. Kröner, Lepizig

    Google Scholar 

  68. Müller-Breslau CH, (1st, (eds) (1887) Die graphische Statik der Baukonstruktionen. Kröner, Leipzig

    Google Scholar 

  69. Navier CLMH (1864) Résumé des leçons données à l’Ecole de ponts et chaussées sur l’application de la mécanique à l’établissement des constructions et des machines, avec des notes et des appendices par M. Barré de Saint Venant. Dunod, Paris

    Google Scholar 

  70. Neumann C (1860) Zur Theorie der Elasticität. J für die reine und Angew Math 57:281–318

    Article  MATH  Google Scholar 

  71. Padova E (1888) Sull’uso delle coordinate curvilinee in alcuni problemi della teoria matematica dell’elasticità. Tipografia del Seminario 3:3–30

    Google Scholar 

  72. Padova E (1889) La teoria di Maxwell negli spazi curvi. Rend della Reale Accad dei Lincei, s 4, 5:875–880

    Google Scholar 

  73. Palladino F, Tazzioli R (1996) Le lettere di Eugenio Beltrami nella corrispondenza di Ernesto Cesaro. Arch Hist Exact Sci 49:321–353

    Article  MATH  MathSciNet  Google Scholar 

  74. Piola G (1833) La meccanica de’ corpi naturalmente estesi trattata col calcolo delle variazioni. Giusti, Milan

    Google Scholar 

  75. Roero CS (2004) Profili di G. Beccaria, C. Somigliana. In Allio R (a cura di), Maestri dell’Ateneo torinese dal Settecento al Novecento. Centro studi di storia dell’università di Torino. Sixth centenary, Turin, pp 247–250, 388–389

    Google Scholar 

  76. Ruta G (1995) Il problema di Saint Venant. Studi e Ricerche n. 7/95 del Dipartimento di Ingegneria Strutturale e Geotecnica, Università La Sapienza, Rome

    Google Scholar 

  77. Saint Venant AJC Barré de (1855) De la torsion des prismes avec considérations sur leurs flexion ainsi que sur l’équilibre intérieur des solides élastiques en général et des formules pratiques pour le calcule de leur résistance à divers efforts s’exerçant simultanément. Imprimerie Impériale, Paris

    Google Scholar 

  78. Saint Venant AJC Barré de (1856) Mémoire sur la flexion des prismes sur le glissements transversaux et longitudinaux qui l’accompagnent lorsqu’elle ne s’opère pas uniformément ou en arc de cercle et sur la forme courbe affectée alors par leurs sections transversales primitivement planes. J de Mathématiques pures et appliquées, s 2, 1:89–189

    Google Scholar 

  79. Website of the Società Italiana di Storia della Matematica

    Google Scholar 

  80. Somigliana C (1888) Sulle equazioni dell’elasticità. Ann di Mat, s. 2, 16;37–64.

    Google Scholar 

  81. Somigliana C (1891) Formole generali per la rappresentazione di un campo di forze per mezzo di forze elastiche. Rend del Regio Ist Lombardo, s 2, 23:3–12

    Google Scholar 

  82. Somigliana C (1891b) Intorno alla integrazione per mezzo di soluzioni semplici. Rend del Regio Ist Lombardo, s 2, 24:1005–1020

    Google Scholar 

  83. Somigliana C (1908) Sulle deformazioni elastiche non regolari. Atti del IV Congr. Internazionale dei Matematici 3:60–72

    Google Scholar 

  84. Somigliana C (1914–1915) Sulla teoria delle distorsioni elastiche. Rend della Reale Accad dei Lincei, nota I, 1914, 23: 463–472; nota 2, 1915, 24:655–666

    Google Scholar 

  85. Tazzioli R (1993) Ether and theory of elasticity in Beltrami’s work. Arch His Exact Sci 46:1–37

    Article  MATH  MathSciNet  Google Scholar 

  86. Tazzioli R (1997) I contributi di Betti e Beltrami alla fisica matematica italiana. In: Proceedings of the XVII Congresso Nazionale di Storia della Fisica e dell’Astronomia, Milan

    Google Scholar 

  87. Tedone O (1907) Sui metodi della fisica matematica. In: Proceedings of the I Congresso S.I.P.S, Parma, pp 33–47

    Google Scholar 

  88. Thomson W (1882–1890) General theory of the equilibrium of an elastic solid (1863, read in 1862). Mathematical and physical papers. Cambridge University Press, Cambridge 3:386–394

    Google Scholar 

  89. Todhunter I, Pearson K (1886–1893) A history of the theory of elasticity and of the strength of materials, from Galileo to the present time (3 vols). Cambridge University Press, Cambridge

    Google Scholar 

  90. Volterra V (1882) Sopra una legge di reciprocità nella distribuzione delle temperature e delle correnti galvaniche costanti in un corpo qualunque. Nuovo Cimento, s 3, 9:188–192

    Google Scholar 

  91. Volterra V (1901) Un teorema sulla teoria della elasticità. Rend della Reale Accad dei Lincei, s 5, 14:127–137

    Google Scholar 

  92. Volterra V (1905a) Sull’equilibrio dei corpi elastici più volte connessi. Rend della Reale Accad dei Lincei, s 5, 14:193–202

    Google Scholar 

  93. Volterra V (1905c) Sulle distorsioni dei solidi elastici più volte connessi. Rend della Reale Accad dei Lincei, s 5, 14:361–366

    Google Scholar 

  94. Volterra V (1905d) Sulle distorsioni dei corpi elastici simmetrici. Rend della Reale Accad dei Lincei, s 5, 14:431–438

    Google Scholar 

  95. Volterra V (1905e) Contributo allo studio delle distorsioni dei solidi elastici. Rendiconti della Reale Accademia dei Lincei, s 5(14):641–654

    Google Scholar 

  96. Volterra V (1906a) Nuovi studi sulle distorsioni dei solidi elastici. Rend della Reale Accad dei Lincei, s 5, 15:519–525

    Google Scholar 

  97. Volterra V (1906b) Leçons sur l’integration des équations différentielles aux dérivée partielles professée à Stockholm sur l’Invitation de S. M. le Roi de Suéde

    Google Scholar 

  98. Volterra V (1907) Sur l’équilibre des corps élastiques multiplement connexes. Ann scientifiques de l’école Normale Superieure, s 3, 24:401–517

    Google Scholar 

  99. Volterra V (1908) Le matematiche in Italia nella seconda metà del secolo XIX. In: Proceedings of the IV Congresso dei Matematici, Rome

    Google Scholar 

  100. Volterra V (1909) Sulle equazioni integrodifferenziali della teoria della elasticità. Rendiconti della Reale Accademia dei Lincei, s 5, 18:295–301

    Google Scholar 

  101. Weingarten G (1901) Sulle superfici di discontinuità nella teoria della elasticità dei corpi solidi. Rend della Reale Accad dei Lincei, s 5, 10:57–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Capecchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capecchi, D., Ruta, G. (2015). The Mathematicians of the Risorgimento. In: Strength of Materials and Theory of Elasticity in 19th Century Italy. Advanced Structured Materials, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-05524-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05524-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05523-7

  • Online ISBN: 978-3-319-05524-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics