Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 52))

  • 1602 Accesses

Abstract

Until 1820 there was a limited knowledge about the elastic behavior of materials: one had an inadequate theory of bending, a wrong theory of torsion, the definition of Young’s modulus. Studies were made on one-dimensional elements such as beams and bars, and two-dimensional, such as thin plates (see for instance the work of Marie Sophie Germain). These activities started the studies on three-dimensional elastic solids that led to the theory of elasticity of three-dimensional continua becoming one of the most studied theories of mathematical physics in the 19th century. In a few years most of the unresolved problems on beams and plates were placed in the archives. In this chapter we report briefly a summary on three-dimensional solids, focusing on the theory of constitutive relationships, which is the part of the theory of elasticity of greatest physical content and which has been the object of major debate. A comparison of studies in Italy and those in the rest of Europe is referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    vol. 4, pp. 349, 350.

  2. 2.

    pp. 344–345. Our translation.

  3. 3.

    Addition, pp. 79–81.

  4. 4.

    pp. 375–376. Our translation.

  5. 5.

    p. 384.

  6. 6.

    p. 384.

  7. 7.

    The difficulty of replacing summations with integrals has been the subject of many comments of French scholars, especially Poisson and Cauchy.

  8. 8.

    pp. CLV, CLIX. The memoir of Cauchy appeared first with the title Mémoire sur l’équilibre et le mouvement d’un système de points materiels sollecités par forces d’attraction ou de répulsion mutuelle [30]. That of Poisson appeared with the title Note sur les vibrations des corps sonores [126].

  9. 9.

    pp. 368–369. Our translation.

  10. 10.

    p. 29. Our translation. Stress was indicated by French scientists by pressure or tension.

  11. 11.

    pp. 250–251.

  12. 12.

    p. 403.

  13. 13.

    pp. 227–252.

  14. 14.

    Actually Cauchy introduced various slightly different definitions of stress. In a memoir of 1845 [34] he adopted the definition considered also by Saint Venant and Jean-Marie Constant Duhamel according to which the “stress (la pression) on a very small area (\(\upomega \) is defined) as the resultant of the actions of all the molecules located on the one side over all the molecules located on the other side whose directions cross this element” [141], p. 24.

  15. 15.

    p. 257.

  16. 16.

    p. 257, Eq. (1.13).

  17. 17.

    pp. 60–81.

  18. 18.

    p. 260, Eq. (1.18).

  19. 19.

    pp. 162–173.

  20. 20.

    p. 9.

  21. 21.

    pp. 83–85.

  22. 22.

    See the results found by Guillaume Wertheim (1815–1861) [158, pp. 581–610]. The greater the accuracy and reliability of the experimental results the more the theoretical predictions of Cauchy and Poisson were disclaimed, though it was not clear why [80, pp. 481–503].

  23. 23.

    p. 69. Our translation.

  24. 24.

    p. 85. Our translation.

  25. 25.

    pp. 7–8. Our translation.

  26. 26.

    s. 2, vol XI, pp. 11–27; 51–74; 134–172.

  27. 27.

    Appendix V, p. 689.

  28. 28.

    A detailed reconstruction of Cauchy’s topics is shown in [116], Appendix V, pp. 691–706.

  29. 29.

    pp. 51–52. Our translation.

  30. 30.

    pp. 36–37.

  31. 31.

    p. 38. Our translation.

  32. 32.

    pp. 542–543. Our translation.

  33. 33.

    p. 759. Our translation.

  34. 34.

    p. 556. Our translation.

  35. 35.

    pp. 556–560.

  36. 36.

    p. 582. Our translation.

  37. 37.

    p. 583. Our translation.

  38. 38.

    In the order: pp. 353–430; 297–350; 242–254.

  39. 39.

    For a discussion of the positivistic conceptions of French science in the first half of the 19th century, see [124].

  40. 40.

    It seems that on September 30th 1822, Cauchy notified the Académie of his researches neither delivering a public reading, nor depositing a manuscript; see [3] p. 97. In [154] it is stated that Cauchy, as a matter of fact, presented his memoir.

  41. 41.

    Cauchy used tension or pressure for traction and compression respectively.

  42. 42.

    p. 300. Our translation.

  43. 43.

    p. 144.

  44. 44.

    The term tensor does not belong to Cauchy, but to Hamilton [76] and Voigt [156]. Similarly Cauchy did not establish the formalized rules of tensor calculus, that were specified only at the end of the 19th century by Ricci-Curbastro; see in particular [89, pp. 125–201].

  45. 45.

    It should be noted that, in all the above mentioned works, Cauchy made extensive use of infinitesimals, whereas he had pursued his research in mathematical analysis with the precise goal of eliminating the infinitesimals. This attitude is similar to that held by Lagrange who while in the Théorie des fonctions analytiques of 1797 developed a way to avoid the use of infinitesimals, in the Méchanique analitique of 1788 extensively applied the infinitesimals, justifying their use for the sake of simplicity [17].

  46. 46.

    Consequently the quadrilateral is a parallelogram whose contiguous sides, (1, 2), (1, 3), will be [...]:

    $$\begin{aligned}(1,2)=dx\left( 1+\frac{\partial \updelta x}{\partial x}\right) ;\;(1,3)=dy\left( 1+\frac{\partial \updelta y}{\partial y}\right) , \end{aligned}$$

    [...] with respect to the angle included by this two sides one will find [...]:

    $$\begin{aligned}\cos \upalpha =\frac{\partial \updelta x}{\partial y}+\frac{\partial \updelta y}{\partial x}. \end{aligned}$$

    [85], pp. 208–209. Our translation. See also [61], pp. 288–292; 332–334.

  47. 47.

    p. 209.

  48. 48.

    p. 215.

  49. 49.

    p. 216. Actually the first three equations were written by Cauchy in a slightly different way, though equivalent to that referred above.

  50. 50.

    p. 218, Eq. 76.

  51. 51.

    Indicated by Lamé with the symbols \(N_i, T_i, \; i=1,2,3\), \(N_i\) being the normal component and \(T_i \) the tangential one, to the face on which the force acts.

  52. 52.

    p. 33.

  53. 53.

    p. 50.

  54. 54.

    p. 51.

  55. 55.

    p. 6. Our translation.

  56. 56.

    p. 249.

  57. 57.

    p. 245.

  58. 58.

    We already said at the end of the previous section that Green introduced the six components of the infinitesimal strain before Saint Venant. He indicated with \(s _ 1, s_2, s_3 \) the longitudinal strains, which are equal to the percentage change of the edge lengths \(dx, dy, dz \) of an elementary parallelepiped and with \( \upalpha , \upbeta , \upgamma \) the angular distortions, equivalent to the variation of the angles between edges initially orthogonal \(dy\) and \(dz\), \(dx\) and \(dz\), \(dx\) and \(dy\).

  59. 59.

    p. 249.

  60. 60.

    p. 255.

  61. 61.

    p. 41. Our translation.

  62. 62.

    p. 708. Our translation.

  63. 63.

    p. 64.

  64. 64.

    From an unpublished manuscript quoted in [58], p. 331.

  65. 65.

    p. 747. Our translation.

  66. 66.

    p. VII. Our translation.

  67. 67.

    p. VIII. Our translation.

  68. 68.

    p. 196. Our translation.

  69. 69.

    p. 97. Our translation. Cauchy-Poisson’s relations are those relations that reduce from 36 to 15 the independent elastic constants of the more general elastic relationship; one in the case of isotropic bodies.

  70. 70.

    p. 288. Our translation.

  71. 71.

    p. 288. Our translation.

  72. 72.

    p. 289. Our translation.

  73. 73.

    p. 293. Our translation.

  74. 74.

    See Fig. 1.2a of paragraph 1.1.1, where \(e\) are the molecules in A\('\) and \(i\) the molecules in B.

  75. 75.

    p. 293. Our translation.

  76. 76.

    p. 293.

  77. 77.

    p. 596. Our translation.

  78. 78.

    p. 597. Our translation.

  79. 79.

    p. 597. Our translation.

  80. 80.

    For a more in depth study on Voigt’s work see [20].

  81. 81.

    An interesting comment of Born’s analysis can be found in [67], where also considerations on modern studies are referred to.

  82. 82.

    pp. 125–129.

  83. 83.

    The last reissue is entitled Principles of mechanics and dynamics, Dover, New York, 2003. The work was begun in 1861; programmed in multiple volumes, for commitments of the two authors, it saw the light of day with only the first volume.

  84. 84.

    vol. 1, p. 136.

  85. 85.

    vol. 1, p. V.

  86. 86.

    In structural mechanics those systems of bodies that contain more constraint reactions than equilibrium equations are called statically indeterminate. The difference between the number of constraint reactions and equilibrium equations is called degree of hyperstaticity. The degree of hyperstaticity can be defined also in dual mode as the difference between the elementary constraints and degrees of freedom of the system of bodies. Because the constraint reactions cannot be determined with the equations of statics, using an engineering terminology, we say that the static problem is not determinate.

  87. 87.

    p. IX. Our translation.

  88. 88.

    For comment on this issue see [40].

  89. 89.

    Here Möbius studied plane and spatial trusses, found the minimum ratios between nodes and bars for a trusses to be statically determined (for \(n \) nodes one needs \( 2n-3 \) bars in the plane and \(3n-6 \) in the space) and discovered that the minimum requirement is not sufficient for the equilibrium if the static matrix has zero determinant. Möbius’ work, at least initially, was not noticed by engineers, thus deserving the considerations for the contribution of the precursors (see next sections). The results of Möbius were found again (likely) independently by Christian Otto Mohr in 1874.

  90. 90.

    Ritter’s method was developed in embryonic form by Culmann in two articles, of 1851 [52] and of 1852 [53], which showed the state of art of iron and wood bridges in Great Britain and America. Here Culmann used equilibrium equations of forces and moments for the determination of the stresses in bars. In particular, the equations of equilibrium were related to sections of the truss. Culmann results were taken again by August Ritter (1826–1908) in his textbook of 1863 Elementare Theorie der Dach und Brüken-Constructionen [136]. Ritter also known in astrophysics (in his honor the Ritter’s crater on the lunar surface), was formed in Hannover and Göttingen; from 1856 he taught mechanics in Hannover, then in 1870 at the Technical college of Aachen. Although in Ritter’s textbook there were no evident references to Culmann (about the method of sections he mentioned only one of his previous work in the journal of the architects and engineers of Great Britain), it is likely that his work, set on roofs of buildings and bridges, was in any way influenced by the articles of Culmann. The method of ‘Ritter sections’, can also be associated to another Ritter, Karl Wilhelm Ritter (1847–1906), who graduated in Zurich in 1868 and, after some professional activities in Hungary, was assistant of Culmann in Zurich from 1870 to 1873. Karl Wilhelm Ritter taught at the Polytechnic institute of Riga until 1882, when, following the death of the master, he was called to the chair of Zurich. He is the author of a key text on trusses [137] where the method of sections is used.

  91. 91.

    p. 290. Our translation.

  92. 92.

    p. 290. Our translation.

  93. 93.

    A similar approach is used to determine the axial stresses in the biaxial bending of a Saint Venant’s cylinder.

  94. 94.

    p. 291. Our translation.

  95. 95.

    vol II/1, p. 411.

  96. 96.

    p. cviii.

  97. 97.

    vol. 1, p. 241. Our translation.

  98. 98.

    vol. 1, p. 235.

  99. 99.

    p. CCXII.

  100. 100.

    p. 953. Our translation.

  101. 101.

    pp. 405–406.

  102. 102.

    p. 1077.

  103. 103.

    p. 1078. Our translation.

  104. 104.

    The force of elasticity is the axial stiffness, that is the product of the longitudinal elasticity modulus by the area of the cross section of the bars, which multiplied by the axial strain gives the force in the bar.

  105. 105.

    vol.1, pp. 346–347. Our translation.

  106. 106.

    vol. 1, p. 347. Our translation.

  107. 107.

    p. 410. Our translation.

  108. 108.

    p. 411. Our translation.

  109. 109.

    vol 2, pp. 402–404.

  110. 110.

    Clebsch’s text had widespread diffusion only in the late nineteenth century, thanks to the translation into French by Saint Venant [42].

  111. 111.

    The Eq. (1.4) are the three equations of motion of a material point \(m\) subjected to external forces and constraints \(L=L'=L^{\prime \prime }=0\); we refer here to one of them as an example: \(m \displaystyle \frac{d^2x}{dt^2}=mX+\lambda ^{\prime } \displaystyle \frac{dL}{dx}+\lambda \displaystyle \frac{dL^{\prime }}{dx}+\lambda ^{\prime \prime } \displaystyle \frac{dL^{\prime \prime }}{dx}+ \text {etc.}\)

  112. 112.

    Previously Poisson had studied the motion under fixed constraints where \(L, L^{\prime }, L^{\prime \prime }, L^{\prime \prime \prime }\) were the constraint equations and \(\lambda , \lambda ^{\prime }, \lambda ^{\prime \prime }, \lambda ^{\prime \prime \prime }\) the constraint reactions.

  113. 113.

    vol 2, pp. 402–404. Our translation.

  114. 114.

    p. 24; p. 69. Actually Lagrange used the symbol \(V\) in the Théorie de la libration de la Lune and the symbols \(\Phi \) and \(\Pi \) respectively in the first and subsequent editions of the Mécanique analytique.

  115. 115.

    p. 386.

  116. 116.

    pp. 1–82.

  117. 117.

    p. 784.

  118. 118.

    p. 57.

  119. 119.

    p. 1197.

  120. 120.

    pp. 79–83. Our translation.

  121. 121.

    p. 217.

  122. 122.

    pp. CXCVII–CXCVIII. Our translation.

  123. 123.

    In the history of science there are people who are ahead of one’s time, anticipating theories. Some are precursors only in appearance and look like such to us because we are strangers to the cultural climate of the time. When the precursors are real, their lack of success depends on contingent reasons, such as poor prestige enjoyed and the publication of pioneering studies in journals not known to those who might appreciate them. For those who understand the history of science in a cumulative sense, precursors disturb the linear path that one wants to follow. For others, the study of the precursors is of interest, although not central: the understanding of their ideas is helpful in understanding the cultural climate of the time. Maxwell and Cotterill should be considered from this second point of view. Together with precursors one must also consider successors, those who come to a result after its spread among the specialists. This stems from the conditions of cultural isolation; also the study of successors is interesting in understanding how scientific ideas grow in a given cultural climate. As part of the history of structural mechanics, among the successors we believe to deserve being mentioned are Wilhelm Fränkel [69] who regained results of Menabrea and Castigliano; and Friedrich Engesser [62] who regained Crotti’s results (see Chap. 4) and introduced the term complementary work [51]. Engesser defined complementary work as the difference between actual and virtual work.

  124. 124.

    p. 296.

  125. 125.

    p. 297.

  126. 126.

    p. 294.

  127. 127.

    p. 456.

  128. 128.

    p. 296.

  129. 129.

    p. 296.

  130. 130.

    p. 298.

  131. 131.

    pp. 81–83.

  132. 132.

    Chapter 10.

  133. 133.

    He was the lucky author of The mechanical principles of engineering and architecture [110]; see [153] on pp. 212–214.

  134. 134.

    The principle of least resistance by Moseley is: “If any number of pressures are equilibrated, some of which are resistances, then each of these resistances is a minimum, subjected to the conditions imposed by the equilibrium of the whole” [108, 109], p. 178, [46], p. 299.

  135. 135.

    p. 300.

  136. 136.

    p. 301.

  137. 137.

    p. 303.

  138. 138.

    p. 388–389.

  139. 139.

    p. 305.

  140. 140.

    pp. 301–302.

  141. 141.

    p. 383.

  142. 142.

    pp. 1060–1061. Our translation.

  143. 143.

    vol. 4, pp. 210–211. Our translation.

  144. 144.

    vol. 4, p. 211. Our translation.

  145. 145.

    vol. 4, p. 213.

  146. 146.

    col. 225.

  147. 147.

    The difference between external and internal bars concerns the contribution of the load \(P=1\), which for the internal bars gives the moment \(a \cdot 1=a\), constant with respect to any pole.

  148. 148.

    col. 226. Our translation.

  149. 149.

    col. 229–230. Our translation.

  150. 150.

    We assigned a positive sign to the horizontal thrust \(H\); the shortening \(\Delta s\) is negative, so \(-H \cdot \Delta s\) is a positive magnitude (original note by Mohr).

  151. 151.

    The quantity \(u \cdot H \cdot \Delta l\) is always positive, since \( \Delta l\) is a lengthening or a shortening whenever \(u \cdot H \) is a tensile or compressive stress. The quantities \( \Delta l\) and \(u \cdot H\) have so in this paper always the same sign (original note by Mohr).

  152. 152.

    col. 231–232. Our translation.

  153. 153.

    col. 512. Our translation.

  154. 154.

    col. 517–518.

  155. 155.

    col. 517–518. Our translation.

  156. 156.

    col 17–38. 17–38. The article has a different typeface with respect to the preceding works with the same title: there is no longer the character ‘Fraktur’, a gothic font typical of the more traditional German literature.

  157. 157.

    cols. 20–22.

  158. 158.

    cols. 22–29.

  159. 159.

    Italian translation of 1927, p. 534. Our translation.

  160. 160.

    A review of the situation of Italian mathematics in the early 19th century, along with an extensive bibliography, can be found in [13]. At the beginning of the book, p. 23, a depressing commentary of 1794 by Pietro Paoli, professor at the study of Pisa is referred to: “Among all those who in Italy dedicate to the study of mathematics, if we exclude some genius, [...] there are a few others that come to mediocrity [...] [most people] at the first reading of the books by Euler, D’Alembert, and Lagrange, get into insurmountable difficulties” [123], vol. 1, p. V.

  161. 161.

    Lorenzo Mascheroni (Bergamo 1750–Paris 1800). Mathematician, his most important contributions concerned mathematical analysis, including studies related to integral calculus and logarithms, structural mechanics with his original studies on the breaking of arches and geometry, with a demonstration that the problems solvable with ruler and compass can be solved only with a compass.

  162. 162.

    Vittorio Fossombroni (Arezzo 1754–Florence 1844). Mathematician, engineer, economist and politician. Important is his contribution to the development of the principle of virtual work.

  163. 163.

    Girolamo Saladini (Lucca 1740–1813). Mathematician, pupil of Vincenzo Riccati, an early member of the Società dei XL (see below), an often quoted mathematician.

  164. 164.

    Vincenzo Angiulli (Ascoli Satriano 1747–1819). Mathematician and politician. Important work was his Discorso intorno agli equilibri of 1770, where he developed and clarified the contribution of Vincenzo Riccati to the principle of virtual work [21].

  165. 165.

    Michele Araldi (Modena 1740–Milano 1813). Physicist and mathematician, historian of mathematics and physics of his time, he wrote the histories of contemporary mathematics in the prefaces of the Memorie dell’Istituto Italiano. He was among the first members of the Regio istituto Lombardo.

  166. 166.

    Antonio Maria Lorgna, also known as Anton Maria Lorgna or Mario Lorgna (Ceredigion 1735–Verona 1796). Mathematician, astronomer and engineer. In 1782 he promoted the foundation of the Società italiana delle scienze, which edited the Memorie di matematica e fisica. Being among the first founders, forty in number, the society was also called Società dei XL and still operates with this name.

  167. 167.

    Paolo Delanges (1750 c.a. –1810). Mathematician, student of Vincenzo Riccati. In 1803 he was appointed a member of the Istituto Nazionale della Repubblica Italiana, based in Bologna. He was one of the first members of the Società dei XL.

  168. 168.

    p. CCXCIII.

  169. 169.

    vol 1, p. 419.

  170. 170.

    vol. 1, p. 460.

  171. 171.

    vol 1, p. 656.

  172. 172.

    p. 224. Our translation.

  173. 173.

    p. 181.

  174. 174.

    The reference to Castigliano does not seem quite right. He, in fact, despite the energetic background, due to the great attention given to elastic energy, was significantly deployed on Saint Venant’s molecular positions. In his La théorie de l’équilibre des systèmes élastiques et ses applications Castigliano criticized the failure criteria based on maximum stress or maximum strain, but did not suggest an alternative criterion [24].

  175. 175.

    p. 189. Our translation.

  176. 176.

    The ranking of the graduation thesis was done on the average of the votes of the individual exams (11 exams in 2  years) which was compounded by the vote of the thesis dissertation. In the case of Cerruti the average was 318/330 for the 11 exams and 348/360 the final average. The thesis was assessed 30/30. Castigliano gained an average of 313/330 and the vote of the thesis 30/30. The final vote was 343/360 (Private communication by Margherita Bongiovanni).

  177. 177.

    p. 1056. Our translation.

References

  1. Araldi M (1806) Tentativo di una nuova rigorosa dimostrazione del principio dell’equipollenza. Memorie dell’Istituto nazionale italiano 1(1):415–426

    Google Scholar 

  2. Avogadro A (1837–1841) Trattato della costituzione generale de’ corpi. Stamperia Reale, Turin

    Google Scholar 

  3. Belhoste B (1991) Augustin Louis Cauchy, a biography. Springer, New York

    Google Scholar 

  4. Belli G (1832) Riflessioni sulla legge dell’attrazione molecolare. Opuscoli matematici e fisici di diversi autori 1:25–68; 128–168; 297–326

    Google Scholar 

  5. Beltrami E (1885) Sulle condizioni di resistenza dei corpi elastici. In: Beltrami E (1902–1920) Opere matematiche (4 vols). Hoepli, Milan, pp 180–189

    Google Scholar 

  6. Benvenuto E (1984) A brief outline of the scientific debate that preceded the works of Castigliano. Meccanica 19(1 supplement):19–32

    Article  MathSciNet  Google Scholar 

  7. Benvenuto E (1991) An introduction to the history of structural mechanics. Springer, New York

    Book  MATH  Google Scholar 

  8. Betti E (1876) Lezioni di fisica matematica dell’anno accademico 1876–77. Betti’s fund near the Scuola Normale di Pisa

    Google Scholar 

  9. Betti E (1874) Teoria della elasticità. Soldaini, Pisa

    Google Scholar 

  10. Born M (1915) Dynamik der kristallgitter. B. G. Teubner, Leipzig

    MATH  Google Scholar 

  11. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford

    MATH  Google Scholar 

  12. Boscovich R (1763) Theoria philosophiae naturalis. Thypographia Remondiniana, Venice

    Google Scholar 

  13. Bottazzini U (1994) Va’ pensiero. Immagini della matematica nell’Italia dell’Ottocento. Il Mulino, Bologna

    Google Scholar 

  14. Bravais A (1866) Études cristallographiques. Gauthier-Villars, Paris

    Google Scholar 

  15. Bresse JAC (1860) Rectification de priorité. Ann des pontes et chaussées, s 3,(20):405–406

    Google Scholar 

  16. Capecchi D (2001) La tensione secondo Cauchy. Hevelius, Benevento

    Google Scholar 

  17. Capecchi D, Drago A (2005) On Lagrange’s history of mechanics. Meccanica 40:19–33

    Article  MATH  MathSciNet  Google Scholar 

  18. Capecchi D, Ruta G, Tazzioli R (2006) Enrico Betti. Teoria della elasticità. Hevelius, Benevento

    Google Scholar 

  19. Capecchi D, Ruta G (2007) Piola’s contribution to continuum mechanics. Arch Hist Exact Sci 61:303–342

    Article  MATH  MathSciNet  Google Scholar 

  20. Capecchi D, Ruta G, Trovalusci P (2010) From classical to Voigt’s molecular models in elasticity. Arch Hist Exact Sci 64:525–559

    Article  MATH  MathSciNet  Google Scholar 

  21. Capecchi D (2012) History of virtual work laws. Birkhäuser, Milan

    Book  Google Scholar 

  22. Capecchi D, Ruta G (2014) Polytechnic schools in the 19th century Europe. The polytechnic school in Karlsruhe. Meccanica 49:13–21

    Article  MATH  MathSciNet  Google Scholar 

  23. Castigliano CA (1873) Intorno ai sistemi elastici. Dissertazione presentata da Castigliano Carlo Alberto alla Commissione Esaminatrice della R. Scuola d’applicazione degli Ingegneri in Torino. Bona, Turin

    Google Scholar 

  24. Castigliano CA (1879) Théorie de l’équilibre des systémes élastiques et ses applications. Negro, Turin

    Google Scholar 

  25. Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides élastiques ou non élastiques. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 2, s 2. Gauthier-Villars, Paris, pp 300–304

    Google Scholar 

  26. Cauchy AL (1827) De la pression ou tension dans un corps solide. Exercices de Mathématiques 2:42–56. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 7, s 2. Gauthier-Villars, Paris, pp 60–81

    Google Scholar 

  27. Cauchy AL (1827) Sur la condensation et la dilatation des corps solides. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 7, s 2. Gauthier-Villars, Paris, pp 82–93

    Google Scholar 

  28. Cauchy AL (1827) Sur les relations qui existent dans l’état d’équilibre d’un corps solide ou fluide entre les pressions ou tensions et les forces accélératrices. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 7, s 2. Gauthier-Villars, Paris, pp 141–145

    Google Scholar 

  29. Cauchy AL (1828) De la pression ou tension dans un systéme de points materiels. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 8, s 2. Gauthier-Villars, Paris, pp 253–277

    Google Scholar 

  30. Cauchy AL (1828) Sur l’équilibre et le mouvement d’un un systéme de points materiels sollicités par des forces d’attraction ou de répulsion mutuelle. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 8, s 2. Gauthier-Villars, Paris, pp 227–252

    Google Scholar 

  31. Cauchy AL (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide élastique ou non élastique. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 8, s 2. Gauthier-Villars, Paris, pp 195–226

    Google Scholar 

  32. Cauchy AL (1829) Sur les équations différentielles d’équilibre ou de mouvement pour un systéme de points matériels. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 9, s 2. Gauthier-Villars, Paris, pp 162–173

    Google Scholar 

  33. Cauchy AL (1841) Mémoires sur les condensations et rotations produits par un changement de form dans un systéme de points matériels. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 12, s 2. Gauthier-Villars, Paris, pp 278–287

    Google Scholar 

  34. Cauchy AL (1845) Observation sur la pression que supporte un élement de surface plane dans un corps solide ou fluide. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 9, s 1. Gauthier-Villars, Paris, pp 230–240

    Google Scholar 

  35. Cauchy AL (1882–1974) Oeuvres complètes (27 vols). Gauthier-Villars, Paris

    Google Scholar 

  36. Cauchy AL (1851) Various writings. ComptesRendus Hebdomadaires des Séances de l’Académie des Sciences 32:326–330

    Google Scholar 

  37. Cavalli G (1865) Mémoire sur la théorie de la résistance statique et dynamique des solides surtout aux impulsions comme celles du tir de cannons. Memorie della Reale Accademia delle Scienze di Torino, s 2, 22:157–233

    Google Scholar 

  38. Cerruti V (1873) Intorno ai sistemi elastici articolati. Dissertazione presentata alla Commissione Esaminatrice della Real Scuola d’Applicazione per gli Ingegneri in Torino. Bona, Turin

    Google Scholar 

  39. Charlton TM (1971) Maxwell, Jenkin and Cotterill and the theory of statically-indeterminate structures. Notes Rec Roy Soc London 26(2):233–246

    Article  MATH  MathSciNet  Google Scholar 

  40. Charlton TM (1995) A history of theory of structures in the nineteenth century. Cambridge University Press, Cambridge

    Google Scholar 

  41. Clapeyron EBP (1857) Calcul d’une poutre élastique reposant librement sur des appuis inégalement espacées. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 45:1076–1080

    Google Scholar 

  42. Clebsch RFA (1883) Théorie de l’élasticité des corps solides, Traduite par MM. Barré de Saint Venant et Flamant, avec des Notes étendues de M. Barré de Saint Venant. Dunod, Paris

    Google Scholar 

  43. Clebsch RFA (1862) Theorie der Elasticität fester Körper. B. G. Teubner, Leipzig

    Google Scholar 

  44. Clerk Maxwell J (1853) On the equilibrium of elastic solids. Trans Roy Soc Edinburgh 20(1):87–120

    Article  Google Scholar 

  45. Clerk Maxwell J (1864) On the calculation of the equilibrium and stiffness of frames. Philos Mag 27:294–299

    Google Scholar 

  46. Cotterill JH (1865a) On an extension of the dynamical principle of least action. Philos Mag s 4, 29:299–305

    Google Scholar 

  47. Cotterill JH (1865b) On the equilibrium of arched ribs of uniform section. Philos Mag s 4, 29:380–389

    Google Scholar 

  48. Cotterill JH (1865c) Further application of the principle of least action. Philos Mag s 4, 29:430–436

    Google Scholar 

  49. Cotterill JH (1884) Applied mechanics. Macmillan, London

    Google Scholar 

  50. Cremona L (1872) Le figure reciproche nella statica grafica. Hoepli, Milan

    MATH  Google Scholar 

  51. Crotti F (1888) La teoria dell’elasticità ne’ suoi principi fondamentali e nelle sue applicazioni pratiche alle costruzioni. Hoepli, Milan

    Google Scholar 

  52. Culmann C (1851) Der Bau hölzerner Brücken in den Vereingten Staaten von Nordamerika. Ergebnisse einer im Auftrage der königl. Bayerischen Regierung in den Jahren 1849 und 1850 unternommenen Reise durch die Vereinigten Staaten. Allgemeine Bauzeitung (Wien), pp 69–129, 387–397

    Google Scholar 

  53. Culmann C (1852) Der Bau der eisernen Brücken in England und Amerika. Allgemeine Bauzeitung (Wien), pp 163–222, 478–487

    Google Scholar 

  54. Culmann C (1866) Die graphische statik. Meyer und Zeller, Zürich

    Google Scholar 

  55. Culmann C (1880) Traité de statique graphique. Dunod, Paris

    Google Scholar 

  56. Dahan Dalmedico A (1989) La notion de pression: de la métaphysique aux diverses mathématisations. Revue d’Histoire des Sciences 42(1):79–108

    Google Scholar 

  57. Dahan Dalmedico A (1993) Mathématisations. Augustin-Louis Cauchy et l’école française, Du Choix, Paris

    MATH  Google Scholar 

  58. Darrigol O (2001) God, waterwheels and molecules: Saint Venant’s anticipation of energy conservation. Hist Stud Phys Biol Sci 31(2):285–353

    Article  Google Scholar 

  59. Delanges P (1811) Analisi e soluzione sperimentale del problema delle pressioni. Memorie di matematica e fisica 15:114–154

    Google Scholar 

  60. Dorna A (1857) Memoria sulle pressioni sopportate dai punti d’appoggio di un sistema equilibrato e in istato prossimo al moto. Memorie della Reale Accademia delle Scienze di Torino s 2, 17:281–318

    Google Scholar 

  61. Dugas R (1950) Histoire de la mécanique. Griffon, Neuchâtel

    MATH  Google Scholar 

  62. Engesser F (1889) Über statisch unbestimmte Träger bei beliebigen Formänderungsgesetze und über der Satz von der Kleinsten Erganzungsarbeit. Zeitschrift des Architekten-und Ingenieur-Vereins zu Hannover 35:733–744

    Google Scholar 

  63. Euler L (1773) De pressione ponderis in planum in cui incumbit. Novi commentarii academiae scientiarum imperialis petropolitanae 18:289–329

    Google Scholar 

  64. Finzi B, Somigliana C (1939–40) Meccanica razionale e fisica matematica. Un secolo di progresso scientifico italiano 1:211–224

    Google Scholar 

  65. Fleeming Jenkin HCF (1873) On braced arches and suspension bridges (1869). Transactions of the Royal Scottish Society of Arts 8:35 et seq

    Google Scholar 

  66. Fleeming Jenkin HCF (1869) On practical applications of reciprocal figures to the calculation of strains on frameworks. Trans Roy Soc Edinburgh 25:441–447

    Article  Google Scholar 

  67. Foce F (2007) La teoria molecolare dell’elasticità dalla fondazione ottocentesca ai nuovi sviluppi del XX secolo. PhD Dissertation, University of Florence 1993. www.arch.unige.it/bma

  68. Fox R (1974) The rise and fall of Laplacian physics. Hist Stud Phys Sci 4:89–146

    Google Scholar 

  69. Fränkel W (1882) Das Prinzip der kleinsten Arbeit der inneren Kräfte elastischer Systeme und eine Anwendung auf die Lösung baustatischer Aufgaben. Zeitschrift des Architekten-und Ingenieur-Vereins zu Hannover 28:63–76

    Google Scholar 

  70. Fresnel AJ (1821) Supplément au mémoire sur la double réfraction. Fresnel AJ (1868) Oeuvres Complétes. Imprimerie Impériale, Paris, pp 343–367

    Google Scholar 

  71. Giulio I (1841) Expérience sur la force et sur l’élasticité des fils de fer. Memorie della Reale Accademia delle Scienze di Torino s 2, 3:275–434

    Google Scholar 

  72. Giulio I (1842) Sur la torsion des fils métallique et sur l’élasticité des ressort en hélice. Memorie della Reale Accademia delle Scienze di Torino, s 2, 4(1):329–383

    Google Scholar 

  73. Giulio I (1841a) Expérience sur la résistence des fers forgés dont on fait le plus d’usage en Piémont. Memorie della Reale Accademia delle Scienze di Torino s 2(3):175–223

    Google Scholar 

  74. Green G (1827) An essay on the application of the mathematical analysis to the theories of electricity and magnetism. Green G (1871) Mathematical papers. McMillan, London, pp 1–82

    Google Scholar 

  75. Green G (1839) On the reflection and refraction of light at the common surface of two non-crystallized media. Green G (1871) Mathematical papers. McMillan, London, pp 245–269

    Google Scholar 

  76. Hamilton WR (1854–55) On some extensions of quaternions. Philosophical magazine (4th series), 7:492–499; 8:125–137, 261–269; 9:46–51, 280–290

    Google Scholar 

  77. Hellinger E (1914) Die allgemeinen Ansätze der Mechanik der Kontinua. Enzyklopädie der mathematischen Wissenschaften. B. G. Teubner, Leipzig, Bd. IV/4, pp 602–694

    Google Scholar 

  78. Hooke R (1678) Lectures de potentia restitutiva or of spring explaining the power of springing bodies. John Martyn, London

    Google Scholar 

  79. Kirchhoff GR (1876) Vorlesungen über mathematischen Physik: Mechanik. Teubner, Leipzig

    Google Scholar 

  80. Kohlrausch F, Loomis FE (1870) Ueber die Elasticität des Eisens, Kupfers und Messings, insbesondere ihre Abhängigkeit von der Temperatur. Annalen der Physik und Chimie 141:481–503

    Article  Google Scholar 

  81. Kurrer KE (1993) The development of the deformation method. In: Becchi A et al (eds) Essays on the history of mechanics. Birkhäuser, Basel, pp 57–86

    Google Scholar 

  82. Lagrange JL (1780) Théorie de la libration de la Lune. In: Lagrange JL, Serret JA, Darboux G (eds) (1867–1892) Oeuvres de Lagrange (14 vols), vol 5. Gauthier-Villars, Paris, pp 5–124

    Google Scholar 

  83. Lagrange JL (1788) Méchanique analitique. Desaint, Paris

    Google Scholar 

  84. Lagrange JL (1867–1892) Oeuvres de Lagrange (14 vols). In: Serret JA, Darboux G (eds). Gauthier-Villars, Paris

    Google Scholar 

  85. Lagrange JL (1811) Mécanique analytique (Tome premiere). Courcier, Paris

    Google Scholar 

  86. Lamé G (1852) Leçons sur la théorie mathématique de l’élasticité des corps solides. Bachelier, Paris

    Google Scholar 

  87. Lamé G (1859) Leçons sur les coordonnées curvilignes et leurs diverses applications. Bachelier, Paris

    Google Scholar 

  88. Laplace PS, (1878) Exposition du systéme du monde. In: Laplace PS (1878) Oeuvres complétes (6 vols). Gauthier-Villars, Paris

    Google Scholar 

  89. Levi Civita T, Ricci Curbastro G (1901) Méthode de calcul différentiel et leurs applications. Math Ann 54:125–201

    MATH  Google Scholar 

  90. Lévy M (1873) Mémoire sur l’application de la théorie mathématique de l’élasticité à l’étude des systémes articulés formés de verges élastiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 76:1059–1063

    Google Scholar 

  91. Lévy M, (1886–1888) La statique graphique et ses applications aux constructions (1874) (4 vols). Gauthier-Villars, Paris

    Google Scholar 

  92. Lorgna AM (1794) Dell’azione di un corpo retto da un piano immobile esercitata ne’ punti di appoggio che lo sostengono. Memorie di Matematica e Fisica della Società Italiana delle Scienze 7:178–192

    Google Scholar 

  93. Love AEH (1892) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  94. Marcolongo R (1902) Teoria matematica dell’elasticità. Reale Università, Messina

    Google Scholar 

  95. Mariotte E (1686) Traité du mouvement des eaux. Estienne Michallet, Paris

    Google Scholar 

  96. Megson THG (2005) Structural and stress analysis. Elsevier, Amsterdam

    Google Scholar 

  97. Menabrea LF (1868) Étude de statique physique. Principe général pour déterminer les pressions et les tensions dans un systéme élastique (1865). Imprimerie Royale, Turin

    Google Scholar 

  98. Menabrea LF (1875) Lettera al presidente dell’Accademia dei Lincei, 27 marzo 1875. Memorie della Reale Accademia dei Lincei s 2, 11:62–66

    Google Scholar 

  99. Menabrea LF (1875) Sulla determinazione delle tensioni e delle pressioni ne’ sistemi elastici. Salviucci, Rome. Quoted from: Menabrea LF (1875) Sulla determinazione delle tensioni e delle pressioni ne’ sistemi elastici. Atti Reale Accademia dei Lincei, s 2, 2:201–220

    Google Scholar 

  100. Menabrea LF (1858) Nouveau principe sur la distribution des tensions dans les systémes élastiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 46:1056–1060

    Google Scholar 

  101. Menabrea LF (1864) Note sur l’effet du choc de l’eau dans les conduites (1858). Memorie della Reale Accademia delle Scienze di Torino s 2(21):1–10

    Google Scholar 

  102. Möbius AF (1837) Lehrbuch der Statik. Göschen, Leipzig

    Google Scholar 

  103. Mohr O (1860–68) Beitrag zur Theorie der Holz und Eisen-Konstruktionen. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover, vol 6 (1860), col 323 et seq, 407 et seq; vol 8 (1862), col 245 et seq; vol 14 (1868) col 19 et seq

    Google Scholar 

  104. Mohr O (1874) Beitrag zur Theorie der Bogenfachwerksträger. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover, 20:223 et seq

    Google Scholar 

  105. Mohr O (1874) Mohr O (1874) Beitrag zur Theorie des Fachwerks. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover 20:509 et seq

    Google Scholar 

  106. Mohr O (1881) Beitrag zur Theorie des Bogenfachwerks. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover 27:243 et seq

    Google Scholar 

  107. Mohr O (1875) Beitrag zur Theorie des Fachwerks. Zeitschrift des Architekten-und Ingenieur Vereins zu Hannover 21:17–38

    Google Scholar 

  108. Moseley H (1833) On a new principle in statics, called the principle of least pressure. Philos Mag 3:285–288

    Google Scholar 

  109. Moseley H (1839) A treatise on mechanics applied to arts. Parker JW, London

    Google Scholar 

  110. Moseley H (1843) The mechanical principles of engineering and architecture. Longman, Brown, Green and Longmans, London

    Google Scholar 

  111. Mossotti OF (1837) On the forces which regulate the internal constitution of bodies. Taylor Sci Mem 1:448–469

    Google Scholar 

  112. Müller-Breslau CH (1886) Die neuren Methoden der Festigkeitslehre. Kröner, Lepizig

    Google Scholar 

  113. Müller-Breslau CH (1913) Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen, ausgehend von dem Gesetze der virtuellen Verschiebungen und den Lehrsätzen über die Formänderungsarbeit. B. G. Teubner, Leipzig

    Google Scholar 

  114. Navier CLMH (1827) Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques (1821). Mémoires de l’Académie des Sciences de l’Institut de France s 2, 7:375–393

    Google Scholar 

  115. Navier CLMH (1833) Résumé des leçons données a l’école royale des ponts et chaussées sur l’application de la Mécanique á l’établissement des constructions et des machines (1826) (2 vols). Carilian Goeury, Paris

    Google Scholar 

  116. Navier CLMH (1864) Résumé des leçons données á l’Ecole de ponts et chaussées sur l’application de la mécanique á l’établissement des constructions et des machines, avec des notes et des appendices par M. Barré de Saint Venant, Dunod, Paris

    Google Scholar 

  117. Newton I (1704) Opticks. Smith and Walford, London

    Google Scholar 

  118. Pagani M (1829–1930) Note sur le mouvement d’une membrane élastique de forme circulaire. Quetelet’s Correspondance Mathématique et Pysique, 5:227–231; 6:25–31

    Google Scholar 

  119. Pagani M (1839) Mémoire sur l’équilibre des colonnes. Memorie della Reale Accademia di Torino s 2, 1:355–371

    Google Scholar 

  120. Pagani M (1827) Mémoire sur l’équilibre des systemes flexibles. Nouveaux mémoires de l’Académie de Bruxelles 4:193–244

    Google Scholar 

  121. Pagani M (1830) Considérations sur les principles qui servent de fondement á la théorie mathématique de l’équilibre et du mouvement vibratoire des corps solides élastiques. Quetelet’s Correspondance Mathématique et Pysique 6:87–91

    Google Scholar 

  122. Pagani M (1834) Note sur l’équilibre d’un systéme dont une partie est supposée inflexible et dont l’autre est flexible et extensible. Nouveaux mémoires de l’Académie de Bruxelles 8:1–14

    Google Scholar 

  123. Paoli P (1803) Elementi di algebra (1794) (3 vols). Tipografia della Società letteraria, Pisa

    Google Scholar 

  124. Pisano R, Capecchi D (2009) La théorie analytique de la chaleur. Notes on Fourier and Lamé Sabix 44:87–94

    Google Scholar 

  125. Poincaré H (1892) Leçons sur la théorie de l’élasticité. Carré, Paris

    Google Scholar 

  126. Poisson SD (1827) Note sur les vibrations des corps sonores. Ann Chim Phys 34:86–93

    Google Scholar 

  127. Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie des Sciences de l’Institut de France 8:357–570

    Google Scholar 

  128. Poisson SD (1831) Mémoire sur la propagation du mouvement dans les milieux élastiques. Mémoires de l’Académie des Sciences de l’Institut de France 10:549–605

    Google Scholar 

  129. Poisson SD (1831) Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. Journal de l’École Polytechnique 13(20):1–174

    Google Scholar 

  130. Poisson SD (1833) Traité de mécanique (1831). Bachelier, Paris

    Google Scholar 

  131. Rankine WJM (1864) Principles of the equilibrium of polyhedral frames. Philosophical Magazine, s 4, 27:92 et seq

    Google Scholar 

  132. Rankine WJM (1858) A manual of applied mechanics. Griffin, London

    Google Scholar 

  133. Rankine WJM (1881) Laws of the elasticity of solid bodies. In: Rankine WJM (ed) Miscellaneous scientific papers. Charles Griffin, London, pp 67–101

    Google Scholar 

  134. Rankine WJM (1881) On axes of elasticity and crystalline forms. In: Rankine WJM (ed) Miscellaneous scientific papers. Charles Griffin, London, pp 119–149

    Google Scholar 

  135. Reddy JN (2007) An introduction to continuum mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  136. Ritter A (1863) Elementare Theorie der Dach und Brücken-Constructionen. Rümpler, Hannover

    Google Scholar 

  137. Ritter KW (1890) Anwendungen der graphischen Statik- Das Fachwerk. Mayer Zeller, Zürich

    Google Scholar 

  138. Rombaux GB (1876) Condizioni di stabilità della tettoja della stazione di Arezzo. Tipografia e litografia del Giornale del Genio Civile, Rome

    Google Scholar 

  139. Saint Venant AJC Barré de (1843) Mémoire sur le calcul de la résistance d’un pont en charpente et sur la détermination au moyen de l’analyse des efforts supportés dans les constructions existantes des grandeurs des nombres constantes qui entrent dans les formules de résistance des matériaux (avec Paul Michelot). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 17:1275–1277

    Google Scholar 

  140. Saint Venant AJC Barré de (1843) Mémoire sur le calcul de la résistance et de la flexion des piéces solides á simple ou á double courbure en prenant simultanément en considérations les diverse efforts auxquelles peuvent être soumises dans tous les sens. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 17:942–954

    Google Scholar 

  141. Saint Venant AJC Barré de (1845) Note sur la pression dans l’intérieur des corps ou à leurs surfaces de séparation. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 21:24–26

    Google Scholar 

  142. Saint Venant AJC Barré de (1851) Principes de mécanique fondé sur la cinématique. Bachelier, Paris

    Google Scholar 

  143. Saint Venant AJC Barré de (1855) De la torsion des prismes avec considérations sur leurs flexion ainsi que sur l’équilibre intérieur des solides élastiques en général et des formules pratiques pour le calcule de leur résistanceá divers efforts s’exerçant simultanément. Imprimerie Impériale, Paris

    Google Scholar 

  144. Saint Venant AJC Barré de (1856) Mémoire sur la flexion des prismes sur le glissements transversaux et longitudinaux qui l’accompagnent lorsqu’elle ne s’opére pas uniformément ou en arc de cercle et sur la forme courbe affectée alors par leurs sections transversales primitivement planes. Journal de Mathématiques pures et appliquées, s 2, 1:89–189

    Google Scholar 

  145. Saint Venant AJC Barré de (1863) Mémoire sur la distribution des élaticités autour de chaque point d’un solide ou d’un milieu de contexture quelconque, particulerment lorsque il est amorphes sans être isotrope. Journal de Mathématiques pures et appliquées, s 2, 8:353–430

    Google Scholar 

  146. Saint Venant AJC Barré de (1865) Mémoire sur les divers genres d’homogéneité des corps solides, et principalement sur l’homogéneité semi polaire on cylindrique, et sur les homogéneités polaires ou sphériconique et spherique. Journal de Mathématiques pures et appliquées, s 2, 10:297–350

    Google Scholar 

  147. Saint Venant AJC Barré de (1868) Formules de l’élasticité des corps amorphes que des compressions permanents et inéguales ont rendus héterotopes. Journal de Mathématiques pures et appliquées, s 2, 13:242–254

    Google Scholar 

  148. Saladini G (1808) Sul principio delle velocità virtuali. Memorie dell’Istituto Nazionale Italiano 2(1):399–420

    Google Scholar 

  149. Stokes GG (1845) On the theories of the internal frictions of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Camb Philos Soc 8:287–319

    Google Scholar 

  150. Strutt JW (1877–1896) The theory of sound (2 vols). London, Macmillan

    Google Scholar 

  151. Thomson W (1857) On the thermo-elastic and thermo-magnetic properties of matter (1855). Q J Math 1:55–77

    Google Scholar 

  152. Thomson W, Tait PG (1867–1883) Treatise on natural philosophy (2 vols). University Press, Cambridge

    Google Scholar 

  153. Timoshenko SP (1953) History of strength of materials. McGraw-Hill, New York

    Google Scholar 

  154. Todhunter I, Pearson K (1886–1893) A history of the theory of elasticity and of the strength of materials, from Galileo to the present time (3 vols). Cambridge University Press, Cambridge

    Google Scholar 

  155. Voigt W (1900) L’état actuel de nos connaissances sur l’élasticité des cristaux. Rapports présentés au Congrés international de Physique. Gauthier-Villars, Paris, pp 277–347

    Google Scholar 

  156. Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Kristalle. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen 34:53–100

    Google Scholar 

  157. Voigt W (1910) Lehrbuch der Kristallphysik. B. G Teubner, Leipzig

    Google Scholar 

  158. Wertheim G (1844) Recherches sur l’élasticité. Deuxiéme mémoire. Annales de Chimie et de Physique, s 3, 12:581–610

    Google Scholar 

  159. Williot VJ (1878) Notions pratiques sur la statique graphique. Lacroix, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Capecchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capecchi, D., Ruta, G. (2015). The Theory of Elasticity in the 19th Century. In: Strength of Materials and Theory of Elasticity in 19th Century Italy. Advanced Structured Materials, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-05524-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05524-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05523-7

  • Online ISBN: 978-3-319-05524-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics