Skip to main content

Diagnosis of Influenza Viruses

  • Chapter
  • First Online:
Insight into Influenza Viruses of Animals and Humans
  • 1666 Accesses

Abstract

Accurate and rapid diagnosis of the influenza virus infection can greatly help in its prevention and control. The success of confirmatory laboratory diagnosis is to a great extent dependent on the choice and quality of specimens, and their transport and storage conditions prior to processing in the laboratory. Samples such as tracheal and cloacal swabs, faeces, tissue samples including trachea, lungs, serum, etc., (both in avian and mammalian species) should be submitted. The isolation of the virus can be carried out in embryonated chicken eggs via amniotic cavity or allantoic cavity route, primary cell culture of chicken embryo fibroblast and Madin Darby Canine Kidney, embryonic swine kidney, primary swine kidney and swine testicle or swine lung epithelial cell lines, chicken kidney cell lines and primary human respiratory epithelial cells, followed by Haemagglutination Assay, Haemagglutination-Inhibition test and plaque assays for confirming the growth of the virus in embryonated egg and cell culture, respectively. The viral antigen can be demonstrated by employing indirect immunofluorescence, AGID, Immunoperoxidase test, various ELISAs, Haemagglutination-Inhibition/Neuraminidase-Inhibition, RT-PCR and PCR-ELISA. The Haemagglutination-Inhibition, ELISA and Single Radial Haemolysis are used for measuring the antibody titre. Various nucleic acid-based detection methods include RT-PCR, RRT-PCR, real-time and multiplex-microsphere-quantitative PCR, loop-mediated isothermal amplification, in situ hybridisation, DNA micro-array, nucleic acid sequence based amplification, nucleic acid sequencing and heteroduplex mobility assay. The RT-PCR and PCR-ELISA can also be used for subtyping of the influenza viruses. The techniques used for the diagnosis of exotic and pandemic influenza viruses should only be done in referral biosecurity level 3 (BSL-3) laboratories, having appropriate disease containment facilities, by trained and skilled personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander DJ (2008) Avian influenza—diagnosis. Zoo Pub Health 55:16–23

    CAS  Google Scholar 

  • Antarasena C, Sirimujalin R, Prommuang P et al (2006) Tissue tropism of a Thailand strain of high-pathogenicity avian influenza virus (H5N1) in tissues of naturally infected native chickens (Gallus gallus), Japanese quail (Coturnix coturnix japonica) and ducks (Anas spp). Avian Pathol 35:250–253

    PubMed  Google Scholar 

  • Bano S, Naeem K, Malik SA (2003) Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Dis 47:817–822

    PubMed  CAS  Google Scholar 

  • Berinstein A, Seal BS, Suarez DL (2002) Heteroduplex mobility assay for detection of new avian influenza virus variants. Avian Dis 46:393–400

    PubMed  Google Scholar 

  • Bertran K, Busquets N, Abad FX et al (2012) Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey. PLoS ONE 7(3):e32107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cattoli G, Drago A, Maniero S et al (2004) Comparison of three rapid detection systems for type A influenza virus on tracheal swabs of experimentally and naturally infected birds. Avian Pathol 33: 432–437

    Google Scholar 

  • Chaharaeina B, Omar AR, Aini I et al (2009) Detection of H5, H7 and H9 subtypes of avian influenza viruses by multiplex reverse transcription-polymerase chain reaction. Microbiol Res 164(2):174–179

    Google Scholar 

  • Chamnanpood C, Sanguansermsri D, Pongcharoen S et al (2011) Detection of distribution of avian influenza H5N1 virus by immunohistochemistry, chromogenic in situ hybridization and real-time PCR techniques in experimentally infected chickens. Southeast Asian J Trop Med Public Health 42(2):303–310

    PubMed  Google Scholar 

  • Chang HK, Park JH, Song MS et al (2008) Development of multiplex rt-PCR assays for rapid detection and subtyping of influenza type A viruses from clinical specimens. J Microbiol Biotechnol 18:1164–1169

    PubMed  CAS  Google Scholar 

  • Chen Y, Deng W, Jia C (2009) Pathological lesions and viral localization of influenza A (H5N1) virus in experimentally infected Chinese rhesus macaques: implications for pathogenesis and viral transmission. Arch Virol 154:227–233

    PubMed  CAS  Google Scholar 

  • Cheng VC, To KK, Tse H et al (2012) Two years after pandemic influenza A/2009/H1N1: what have we learned? Clin Microbiol Rev 25(2):223–263

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cho CH, Woo MK, Kim JY et al (2012) Evaluation of five rapid diagnostic kits for influenza A/B virus. J Virol Meth. doi:10.1016/j.jviromet.2012.09.003

    Google Scholar 

  • Choi YJ, Nam HS, Park JS et al (2010) Comparative analysis of the multiple test methods for the detection of Pandemic Influenza A/H1N1 2009 virus. J Microbiol Biotechnol 20(10):1450–1456

    PubMed  CAS  Google Scholar 

  • Collins RA, Ko LS, So KL, Ellis T, Lau LT, Yu ACH (2003) A NASBA method to detect high and low pathogenicity H5 avian influenza viruses. Avian Dis 47:1069–1074

    PubMed  CAS  Google Scholar 

  • de Jong MD, Simmons CP, Thanh TT (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207

    PubMed  Google Scholar 

  • Deng M, Long L, Xiao X et al (2011) Immuno-PCR for one step detection of H5N1 avian influenza virus and Newcastle disease virus using magnetic gold particles as carriers. Vet Immunol Immunopathol 141(3–4):183–189

    PubMed  CAS  Google Scholar 

  • Dybkaer K, Munch M, Handberg KJ (2004) Application and evaluation of RT-PCR-ELISA for the nucleoprotein and RT-PCR for detection of low-pathogenic H5 and H7 subtypes of avian influenza virus. J Vet Diagn Invest 16:51–56

    PubMed  Google Scholar 

  • Eckroade RJ, Silverman LA, Acland HM (1984) Avian influenza in Pennsylvania. In: Proceeding of the 33rd western poultry disease conference, pp 1–2

    Google Scholar 

  • Elizalde M, Agüero M, Buitrago D et al (2014) Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests. J Virol Meth 196:71–81

    CAS  Google Scholar 

  • Fereidouni SR, Harder TC, Gaidet N et al (2012) Saving resources: avian influenza surveillance using pooled swab samples and reduced reaction volumes in real-time RT-PCR. J Virol Meth 186(1–2):119–125

    CAS  Google Scholar 

  • Fouchier RA, Bestebroer TM, Herfst L et al (2000) Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol 38:4096–4101

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ge Y, Wu B, Qi X et al (2013) Rapid and sensitive detection of novel avian-origin influenza A(H7N9) virus by reverse transcription loop-mediated isothermal amplification combined with a lateral-flow device. PLoS ONE 8(8):e69941

    PubMed Central  PubMed  CAS  Google Scholar 

  • George KS (2012) Diagnosis of influenza virus. Meth Mol Biol 865:53–69

    Google Scholar 

  • Ghedin E, Sengamalay NA, Shumway M et al (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–1166

    PubMed  CAS  Google Scholar 

  • Gu J, Xie Z, Gao Z (2007) H5N1 infection of the respiratory tract and beyonds: a molecular pathology study. Lancet 370:1137–1145

    PubMed  CAS  Google Scholar 

  • Gupta AK, Anita A, Vandanajay B (2003) Detection of equine influenza viral genome by RT-PCR and RNA-DNA hybridization. Ind J Biotech 2:214–219

    CAS  Google Scholar 

  • Hadjiev G, Bumbarov V, Ivanov Y et al (2000) Preparation of diagnostic agents—ingredients for ELISA and use of double sandwich procedures for detection of antigens and antibodies in avian influenza A (grippe). Bul J Vet Med 3:163–170

    Google Scholar 

  • Haines DM, Waters EH, Clark EG (1993) Immuno-histochemical detection of swine influenza virus in formalin fixed and paraffin-embedded tissues. Can J Vet Res 57:33–36

    PubMed Central  PubMed  CAS  Google Scholar 

  • He CJ, Ding NJ, Mou X et al (2012) Identification of three H1N1 influenza virus groups with natural recombinant genes circulating from 1918 to 2009. Virology 427(1):60–66

    PubMed  CAS  Google Scholar 

  • Heine HG, Trinidad L, Selleck P et al (2007) Rapid detection of highly pathogenic avian influenza H5N1 virus by TaqMan reverse transcriptase-polymerase chain reaction. Avian Dis 50:370–372

    Google Scholar 

  • Hoffmann B, Harder T, Starick E et al (2007) Rapid and highly sensitive pathotyping of avian influenza A H5N1 virus by using real-time reverse transcription-PCR. J Clin Microbiol 45:600–603

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huang Y, Khan M, Măndoiu II (2013) Neuraminidase subtyping of avian influenza viruses with Primerhunter-designed primers and quadruplicate primer pools. PLoS ONE 8(11):e81842

    PubMed Central  PubMed  Google Scholar 

  • Hymas WC, Mills A, Ferguson S et al (2010) Development of a multiplex real-time RT-PCR assay for detection of influenza A, influenza B, RSV and typing of the 2009-H1N1 influenza virus. J Virol Meth 167(2):113–118

    CAS  Google Scholar 

  • Imai M, Ninomiya A, Minekawa H et al (2006) Development of H5-RTLAMP (loop-meidated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine 24:6679–6682

    PubMed  CAS  Google Scholar 

  • Imai M, Ninomiya A, Minekawa H et al (2007) Rapid diagnosis of H5N1 avian influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated isothermal amplification method. J Virol Meth 141:173–180

    CAS  Google Scholar 

  • Jackowska T, Grzelczyk-Wielgorska M, Pawlik K (2013) Rapid test for influenza in diagnostics. Adv Exp Med Biol 756:263–269

    PubMed  Google Scholar 

  • Jayawardena S, Cheung CY, Barr I et al (2007) Loopmediated isothermal amplification for influenza A (H5N1) virus. Emerg Infect Dis 13:899–901

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jernigan DB, Lindstrom SL, Johnson JR et al (2011) Detecting 2009 pandemic influenza A (H1N1) virus infection: availability of diagnostic testing led to rapid pandemic response. Clin Infect Dis 52(Suppl 1):S36–S43

    PubMed  Google Scholar 

  • Ji Y, Guo W, Zhao L et al (2011) Development of an antigen-capture ELISA for the detection of equine influenza virus nucleoprotein. J Virol Meth 175(1):120–124

    CAS  Google Scholar 

  • Jonges M, Meijer A, Fouchier RA et al (2013) Guiding outbreak management by the use of influenza A(H7Nx) virus sequence analysis. Euro Surveill 18:20460

    PubMed  CAS  Google Scholar 

  • Kalthoff D, Breithaupt A, Teifke JP (2008) Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg Infect Dis 14:1267–1270

    PubMed Central  PubMed  Google Scholar 

  • Kang X, Jiang T, Li Y et al (2010) Duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus. Virol J 7:113

    PubMed Central  PubMed  Google Scholar 

  • Kataria JM, Singh SD, Dhama K et al (2005) Training manual on sero-surveillance of Avian Influenza. Training held at division of avian diseases, I.V.R.I., Izatnagar (U.P.), 20–21 Oct 2005, pp 1–45

    Google Scholar 

  • Kessler N, Ferraris O, Palmer K et al (2004) Use of the DNA flow-thru chip, a three-dimensional biochip, for typing and subtyping of influenza viruses. J Clin Microbiol 42:2173–2185

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim WS, Lee GC, Yoo JH et al (2012) Development and diagnostic application/evaluation of pandemic (H1N1) 2009 influenza virus-specific monoclonal antibodies. Microbiol Immunol 56(6):372–377

    PubMed  CAS  Google Scholar 

  • Kodihalli S, Sivanandan V, Nagaraja KV et al (1993) Antigen capture enzyme immunoassay for detection of avian influenza virus in turkeys. Am J Vet Res 54:1385–1390

    PubMed  CAS  Google Scholar 

  • Kostina EV, Riabinin VA, Agafonov AP et al (2011) Microarray for diagnostics of human pathogenic influenza A viruses subtypes. Bioorg Khim 37(5):715–717

    PubMed  CAS  Google Scholar 

  • Kumar S, Henrickson KJ (2012) Update on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic. Clin Microbiol Rev 25(2):344–361

    PubMed Central  PubMed  CAS  Google Scholar 

  • Landolt GA, Karasin AI, Hofer C et al (2005) Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses. Am J Vet Res 66:119–124

    PubMed  CAS  Google Scholar 

  • Lau LT, Banks J, Aherne R et al (2004) Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem Biophys Res Com 313:336–342

    PubMed  CAS  Google Scholar 

  • Lee CK, Cho CH, Woo MK et al (2012a) Evaluation of Sofia fluorescent immunoassay analyzer for influenza A/B virus. J Clin Virol 55(3):239–243

    PubMed  CAS  Google Scholar 

  • Lee HK, Loh TP, Lee CK et al (2012b) A universal influenza A and B duplex real-time RT-PCR assay. J Med Virol 84(10):1646–1651

    PubMed  CAS  Google Scholar 

  • Lee CS, Kang BK, Lee DH et al (2008) One-step multiplex RT-PCR for detection and subtyping of swine influenza H1, H3, N1, N2 viruses in clinical samples using a dual priming oligonucleotide (DPO) system. J Virol Meth 151:30–34

    CAS  Google Scholar 

  • Lee CW, Suarez DL (2004) Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. J Virol Meth 119:151–158

    CAS  Google Scholar 

  • Leijon M, Ullman K, Thyselius S et al (2011) Rapid PCR-based molecular pathotyping of H5 and H7 avian influenza viruses. J Clin Microbiol 49(11):3860–3873

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liang F, Lai R, Arora N et al (2013) Multiplex-microsphere-quantitative PCR: nucleic acid amplification and detection on microspheres. Anal Biochem 432(1):23–30

    PubMed  CAS  Google Scholar 

  • Liao RS, Landt O, Hill JT (2011) Comparison of a laboratory-developed RT-PCR and the CDC RT-PCR protocol with rapid immunodiagnostic testing during the 2009 H1N1 influenza A pandemic. Diagn Microbiol Infect Dis 70(2):236–239

    PubMed  CAS  Google Scholar 

  • Lodes MJ, Suciu D, Elliott M et al (2006) Use of semiconductor-based oligonucleotide microarrays for influenza A virus subtype identification and sequencing. J Clin Microbiol 44:1209–1218

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lombardo T, Dotti S, Renzi S (2012) Susceptibility of different cell lines to avian and swine influenza viruses. J Virol Meth 185(1):82–88

    CAS  Google Scholar 

  • Lu YY, Yan JY, Feng Y et al (2008) Rapid detection of H5 avian influenza virus by TaqMan-MGB real-time RT-PCR. Lett Appl Microbiol 46:20–25

    PubMed  CAS  Google Scholar 

  • Lu G, Rowley T, Garten R et al (2007) FluGenome: a web tool for genotyping influenza A virus. Nucl Acids Res 35:W275–W279

    PubMed Central  PubMed  Google Scholar 

  • Luo Q, Huang H, Zou W et al (2009) An indirect sandwich ELISA for the detection of avian influenza H5 subtype viruses using anti-hemagglutinin protein monoclonal antibody. Vet Microbiol 137(1–2):24–30

    PubMed  CAS  Google Scholar 

  • Malik YS, Patnayak DP, Goyal SM (2004) Detection of three avian respiratory viruses by single-tube multiplex reverse transcription-polymerase chain reaction assay. J Vet Diagn Invest 16:244–248

    PubMed  Google Scholar 

  • Monto AS, Maassab HF, Bryan ER (1981) Relative efficacy of embryonated eggs and cell culture for isolation of contemporary influenza viruses. J Clin Microbiol 13:233–235

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakauchi M, Yasui Y, Miyoshi T et al (2011) One-step real-time reverse transcription-PCR assays for detecting and subtyping pandemic influenza A/H1N1 2009, seasonal influenza A/H1N1, and seasonal influenza A/H3N2 viruses. J Virol Meth 171(1):156–162

    CAS  Google Scholar 

  • Nakharuthai C, Boonsoongnern A, Poolperm P et al (2008) Occurrence of swine influenza virus infection in swine with porcine respiratory disease complex. Southeast Asian J Trop Med Public Health 39:1045–1053

    PubMed  Google Scholar 

  • Nie K, Zhao X, Ding X et al (2013) Visual detection of human infection with influenza A(H7N9) virus by subtype-specific reverse transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye. Clin Microbiol Infect 19(8):E372–E375

    PubMed  CAS  Google Scholar 

  • Nitsch-Osuch A, Stefanska I, Kuchar E et al (2013) Influence of rapid influenza test on clinical management of children younger than five with febrile respiratory tract infections. Adv Exp Med Biol 755:237–241

    PubMed  Google Scholar 

  • Obenauer JC, Densen J, Mehta PK et al (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580

    PubMed  CAS  Google Scholar 

  • OIE (2005). www.oie.int

  • Ong WT, Omar AR, Ideris A et al (2007) Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A. J Virol Meth 141(1–2):57–64

    Google Scholar 

  • Ozaki H, Sugita S, Kida H (2000) A rapid and sensitive method for diagnosis of equine influenza by antigen detection using immuno-PCR. Jpn J Vet Res 48:187–195

    Google Scholar 

  • Pang YS, Xie ZX, Khan MI (2001) Establishement of two-temperature multiplex polymerase chain reaction (PCR) for detecting six pathogens causing respiratory diseases in chicks at the same time. Chin J Vet Sci Tech 31:3–6

    Google Scholar 

  • Pasick J (2008) Advances in the molecular based techniques for the diagnosis and characterization of avian influenza virus infections. Transboundary Emerg Dis 55:329–338

    CAS  Google Scholar 

  • Payungporn S, Chutinimitkul S, Chaisingh A et al (2006) Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J Virol Meth 131:143–147

    CAS  Google Scholar 

  • Poddar SK (2002) Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RT-PCR) and agarose gel electrophoresis. J Virol Meth 99:63–70

    CAS  Google Scholar 

  • Poon LLM, Leung CSW, Chan KH et al (2005) Detection of human influenza A viruses by loop-mediated isothermal amplification. J Clin Microbiol 43:427–430

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pourbakhsh SA, Khodashenas M, Kianizadeh M et al (2000) Isolation and identification of avian influenza virus H9N2 subtype. Arch Razi Inst 51:27–38

    Google Scholar 

  • Rahim MN, Selman M, Sauder PJ et (2013) Generation and characterization of a new panel of broadly reactive anti-NS1 mAbs for detection of influenza A virus. J Gen Virol 94(3):593–605. doi: 10.1099/vir.0.046649-0

    Google Scholar 

  • Read AJ, Arzey KE, Finlaison DS et al (2012) A prospective longitudinal study of naturally infected horses to evaluate the performance characteristics of rapid diagnostic tests for equine influenza virus. Vet Microbiol 156(3–4):246–255

    PubMed  CAS  Google Scholar 

  • Reichmuth DS, Wang SK, Barrett LM et al (2008) Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip 8:1319–1324

    PubMed  CAS  Google Scholar 

  • Rimmelzwaan GF, de Jong JC, Bestebroer TM et al (2001) Antigenic and genetic characterization of swine influenza A (H1N1) viruses isolated from pneumonia patients in The Netherlands. Virology 282:301–306

    PubMed  CAS  Google Scholar 

  • Romagosa A, Gramer M, Joo HS (2011) Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non-vaccinated pigs. Influenza Other Respir Viruses 6(2):110–118

    PubMed Central  PubMed  Google Scholar 

  • Romanowska M, Stefanska I, Donevski S et al (2013) Infections with A (H1N1) 2009 influenza virus in Poland during the last pandemic: experience of the National Influenza Center. Adv Exp Med Biol 756:271–283

    PubMed  CAS  Google Scholar 

  • Ruest A, Michaud S, Deslandes S (2003) Comparison of the Directigen Flu A+ B test, the QuickVue Influenza test, and the clinical case definition to viral culture and reverse transcription—PCR for rapid diagnosis of influenza virus infection. J Clin Microbiol 41(8):3487–3493. doi:10.1128/JCM.41.8.3487-3493.2003

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sakurai A, Takayama K, Nomura N et al (2013) Broad-spectrum detection of H5 subtype influenza A viruses with a new fluorescent immunochromatography system. PLoS ONE 8(11):e76753

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shafer AL, Katz JB, Eernisse KA (1998) Development and validation of a competitive enzyme-linked immunosorbent assay for detection of type A influenza antibodies in avian sera. Avian Dis 42:28–34

    PubMed  CAS  Google Scholar 

  • Shahsavandi S, Ebrahimi MM, Mohammadi A (2012) Impact of chicken-origin cells on adaptation of a low pathogenic influenza virus. Cytotechnology 65(3):419–424

    Google Scholar 

  • Shahsavandia S, Salmanianb A, Ghorashib SA et al (2011) Development of rHA1-ELISA for specific and sensitive detection of H9 subtype influenza virus. J Virol Meth 171(1):260–263

    Google Scholar 

  • Shamseddini M, Vasfi-Marandi M, Pourbakhsh SA et al (2002) The use of indirect immunoperoxidase assay in diagnosis of type A (H9N2) avian influenza virus antigen on frozen tissue sections. Arch Razi Inst 53:11–21

    Google Scholar 

  • Shu B, Wu KH, Emery S et al (2011) Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus. J Clin Microbiol 49(7):2614–2619

    PubMed Central  PubMed  CAS  Google Scholar 

  • Simon-Grife M, Martín-Valls GE, Vilar MJ et al (2012) Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment. Vet Res 43(1):24

    PubMed Central  PubMed  Google Scholar 

  • Skeeles JK, Morressey RL, Nagy A et al (1984) The use of fluorescent antibody (FA) techniques for rapid diagnosis of avian influenza (H5N2) associated with the Pennsylvania outbreak of 1983–1984. In: Proceedings of the 35th north central avian disease conference, p 32

    Google Scholar 

  • Skibbe D, Zhou EM, Janke BH (2004) Comparison of a commercial enzyme-linked immunosorbent assay with hemagglutination inhibition assay for serodiagnosis of swine influenza virus (H1N1) infection. J Vet Diagn Invest 16:86–89

    PubMed  Google Scholar 

  • Skowronski DM, Janjua NZ, De Serres G et al (2012) Cross-reactive and vaccine-induced antibody to an emerging swine-origin variant of influenza A virus subtype H3N2 (H3N2v). J Infect Dis 206(12):1852–1861

    PubMed  CAS  Google Scholar 

  • Slemons RD, Brugh M (1998) Rapid antigen detection as an aid in early diagnosis and control of avian influenza. In: Swayne DE, Slemons RD (eds) Proceedings of the IV international symposium on avian influenza, U.S. Animal Health Association, Richmond, VA, pp 313–317

    Google Scholar 

  • Slomka MJ, Pavlidis T, Banks J et al (2007) Validated H5 Eurasian realtime reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis 50:373–377

    Google Scholar 

  • Soltanialvara M, Goodarzib R, Akbarnejada F (2012) Genetic analysis of polymerase complex (PA, PB1 and PB2) genes of H9N2 avian influenza viruses from Iran (1999 to 2009). Asia Pac J Trop Biomed 2(1): 858–862

    Google Scholar 

  • Spackman E, Suarez DL (2008) Detection and identification of the H5 hemagglutinin subtype by real-time RT-PCR. Meth Mol Biol 436:27–33

    CAS  Google Scholar 

  • Spackman E, Senne DA, Bulaga LL et al (2003) Development of a multiplex real-time RT-PCR as a diagnostic tool for avian influenza. Avian Dis 47:1087–1090

    PubMed  CAS  Google Scholar 

  • Starick E, Werner O (2003) Detection of H7 avian influenza virus directly from poultry specimens. Avian Dis 47:1187–1189

    PubMed  CAS  Google Scholar 

  • Sugimura T, Murakami Y, Ogawa T (2000) The susceptibility of culture cells to avian influenza viruses. J Vet Med Sci 62:659–660

    PubMed  CAS  Google Scholar 

  • Sugita S, Matsumura T (2003) Detection of equine-2 influenza virus by real-time PCR. J Equine Sci 14:111–117

    Google Scholar 

  • Sun Y, Dhumpa R, Bang DD et al (2011) DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7. Diagn Microbiol Infect Dis 69(4):432–439

    PubMed  CAS  Google Scholar 

  • Swayne DE, Halvorson DA (2003) Influenza. In: Saif YM, Barnes HJ, Fadly AM, Glisson JR, McDougald LR, Swayne DE (eds) Diseases of poultry, 11th edn. Iowa State University Press, Ames, IA, pp 135–160

    Google Scholar 

  • Swayne DE, Senne DA, Beard CW (1998) Influenza. In: Swayne DE, Glisson JR, Jackwood MW, Pearson JE, Reed WM (eds) Isolation and identification of avian pathogens, 4th edn. American Association of Avian Pathologists, Kennett Square, pp 150–155

    Google Scholar 

  • Takekawa JY, Hill NJ, Schultz AK et al (2011) Rapid diagnosis of avian influenza virus in wild birds: use of a portable rRT-PCR and freeze-dried reagents in the field. J Vis Exp 54:2829

    Google Scholar 

  • Taubenberger JK, Layne SP (2001) Diagnosis of Influenza virus: coming to grips with the molecular era. Mol Diagn 6(4):291–305

    PubMed  CAS  Google Scholar 

  • To KKW, Ng KHL, Que TL et al (2012) Avian influenza A H5N1 virus: a continuous threat to humans. Emerg Microbes Infect 1:e25

    PubMed Central  Google Scholar 

  • Tombari W, Paul M, Bettaieb J et al (2013) Risk factors and characteristics of low pathogenic avian influenza virus isolated from commercial poultry in Tunisia. PLoS ONE 8(1):e53524. doi: 10.1371/journal.pone.0053524. Epub 11 Jan 2013

  • Townsend MB, Dawson ED, Mehlmann M et al (2006) Experimental evaluation of the fluchip diagnostic microarray for influenza virus surveillance. J Clin Microbiol 44:2863–2871

    PubMed Central  PubMed  CAS  Google Scholar 

  • Trani LD, Bedini B, Donatelli I et al (2006) A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control. BMC Infect Dis 6:87. doi:10.1186/1471-2334-6-87

    PubMed Central  PubMed  Google Scholar 

  • Van Campen H, Easterday BC, Hinshae VS (1989) Virulent avian influenza A viruses: their effect on avian lymphocytes and macrophages in vivo and in vitro. J Gen Virol 70:2887–2895

    PubMed  Google Scholar 

  • van Elden LJR, Nijhuis M, Schipper P et al (2001) Simultaneous detection of Influenza viruses A and B using real-time quantitative PCR. J Clin Microbiol 39(1):196–200

    PubMed Central  PubMed  Google Scholar 

  • Velumani S, Du Q, Fenner BJ et al (2008) Development of an antigen-capture ELISA for detection of H7 subtype avian influenza from experimentally infected chickens. J Virol Meth 147(2):219–225

    CAS  Google Scholar 

  • Wang XR, Deng GH, Yu KZ et al (2004) Detection and subtyping of avian influenza virus using DNA microarray hybridization. Anim Biotech Bull 9:356–357

    Google Scholar 

  • Welch DF, Ginocchio CC (2010) Role of rapid immunochromatographic antigen testing in diagnosis of influenza A virus 2009 H1N1 infection. J Clin Microbiol 48(1):22–25

    PubMed Central  PubMed  CAS  Google Scholar 

  • WHO (2005) Manual on animal influenza diagnosis and surveillance. Department of Communicable Disease Surveillance and Response. WHO/CDS/CSR/NCS/2002.5 Rev. 1

    Google Scholar 

  • Wu C, Cheng X, He J (2008) A multiplex real-time RT-PCR for detection and identification of influenza virus types A and B and subtypes H5 and N1. J Virol Meth 148:81–88

    CAS  Google Scholar 

  • Wu QM, Gao QY, Zhang ZZ et al (1999) Preparation of nucleoprotein gene probe for avian influenza virus and its preliminary application. Chin J Vet Med 25:5–9

    Google Scholar 

  • Xu X, Jin M, Yu Z et al (2005) Latex agglutination test for monitoring antibodies to avian influenza virus subtype H5N1. J Clin Microbiol 43:1953–1955

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang JR, Kuo CY, Huang HY et al (2014) Newly emerging mutations in the matrix genes of the human influenza A (H1N1) pdm09 and A (H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR. J Clin Microbiol 52(1):76–82

    PubMed  Google Scholar 

  • Yuen KY, Chan PKS, Peiris M et al (1998) Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351(9101):467–471

    PubMed  CAS  Google Scholar 

  • Zhou EM, Chan M, Heckert RA et al (1998) Evaluation of a competitive ELISA for detection of antibodies against avian influenza virus nucleoprotein. Avian Dis 42:517–522

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kapoor .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kapoor, S., Dhama, K. (2014). Diagnosis of Influenza Viruses. In: Insight into Influenza Viruses of Animals and Humans. Springer, Cham. https://doi.org/10.1007/978-3-319-05512-1_10

Download citation

Publish with us

Policies and ethics