Skip to main content

Human Impacts on Soils

  • Chapter
  • First Online:
The Soils of Antarctica

Part of the book series: World Soils Book Series ((WSBS))

Abstract

Antarctic soils are vulnerable to disturbance due to their physical properties and naturally slow recovery rates that are suppressed by low temperatures and low availability of liquid moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ah Low L, Cowan DA (2005) Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9:385–389

    Article  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38(5):1265–1274

    Article  CAS  Google Scholar 

  • Aislabie JM, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  CAS  Google Scholar 

  • Aislabie J, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55:21–36

    Article  CAS  Google Scholar 

  • Aislabie JM, Bockheim J, McLeod M, Hunter D, Stevenson B, Barker GM (2011) Microbial biomass and community structure changes along a soil development chronosequence near Lake Wellman, southern Victoria Land. Antarct Sci 24:154–164

    Article  Google Scholar 

  • Aislabie JM, Ryburn J, Gutierrez-Zamora M-L, Rhodes P, Hunter D, Sarmah AK, Barker GM, Farrell RL (2012) Hexadecane mineralization activity in hydrocarbon-contaminated soils of Ross Sea region Antarctica may require nutrients and inoculation. Soil Biol Biochem 45:49–60

    Article  CAS  Google Scholar 

  • Antarctic and Southern Ocean Coalition (ASOC) (2004) Environmental reports of Fildes Peninsula, 1988–1997: benchmarks for environmental management. Antarctic and Southern Ocean Coalition report, December 2004, 15 pp

    Google Scholar 

  • Antarctic Treaty Consultative Meeting (2011) ATCM XXIV, measure 10: management plan for Antarctic specially managed area no 2, McMurdo Dry Valleys, Southern Victoria Land. http://www.mcmurdodryvalleys.aq/images/asma2mpfull.pdf

  • Antarctica New Zealand (Undated) Environmental Impact Assessment. http://www.antarcticanz.govt.nz/environmentalstewardship/environmental-impact-assessment. Accessed 4 Nov 2013

  • Antarctica New Zealand (2009) VISTA update and review: visitor site monitoring in the Ross Sea region. Antarctica New Zealand, Christchurch

    Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fungal Divers 49:13–22

    Article  Google Scholar 

  • Ayres E, Nkem JN, Wall DH, Adams BJ, Barnett JE, Broos EJ, Parsons AN, Powers LE, Simmons BL, Virginia RA (2008) Effects on human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conserv Biol 22(6):1544–1551

    Article  Google Scholar 

  • Balks MR, Campbell DI, Campbell IB, Claridge GGC (1995) Interim results of 1993–94 soil climate, active layer and permafrost investigations at Scott Base, Vanda and Beacon Heights, Antarctica. Antarct Res Unit Spec Rep 1:64

    Google Scholar 

  • Balks MR, Paetzold R, Kimble JM, Aislabie J, Campbell IB (2002) Effect of hydrocarbon spills on temperature and moisture regimes of Cryosols in the Ross Sea region. Antarct Sci 14(4):319–326

    Article  Google Scholar 

  • Ball BA, Barrett JE, Gooseff MN, Virginia RA, Wall DH (2011) Implications for meltwater pulse events for soil biology and biogeochemical cycling in a polar desert. Polar Res 30:14555. doi:10.3402/polar.v30i0.14555

    Article  Google Scholar 

  • Ball BA, Virginia RA (2012) Meltwater seep patches increase heterogeneity of soil geochemistry and therefore habitat suitability. Geoderma 189–190:652–660

    Article  CAS  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterisation of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400(1–3):212–226

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, Campbell IB, Lyons WB, Moorhead DL, Nkem JN, Sletten RS, Steltzer H, Wall DH, Wallenstein MD (2006) Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem 38:3019–3034

    Article  CAS  Google Scholar 

  • Bej AK, Saul DJ, Aislabie J (2000) Cold tolerance of alkane-degrading bacteria isolated from soil near Scott Base, Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood destroying soft rot fungi in the historic expeditions huts of Antarctica. Appl Environ Microbiol 70:1328–1335

    Article  CAS  Google Scholar 

  • Blanchette RA, Held BW, Arenz BE, Jurgens JA, Bates NJ, Duncan SM, Farrell RL (2010) An Antarctic hotspot for fungi at Shackleton’s historic hut on Cape Royds. Microb Ecol 60:29–38

    Article  Google Scholar 

  • Bockheim JG (2010) Evolution of desert pavements and the vesicular layer in soils of the Transantarctic Mountains. Geomorphology 118:433–443

    Article  Google Scholar 

  • Braun C, Mustafa O, Nordt A, Pfeiffer S, Peter HU (2012) Environmental monitoring and management proposals for the Fildes Region, King George Island, Antarctica. Polar Res 31:18206. doi:10.3402/polar.v31i0.18206

  • Broadbent ND (1994) An archaeological survey of Marble Point, Antarctica. Antarct J 19:3–6

    Google Scholar 

  • Broady PA (1981) The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Br Phycol J 16(3):231–240

    Article  Google Scholar 

  • Campbell IB, Claridge GGC (1975) Morphology and age relationships of Antarctic soils. In: Suggate RP, Cresswell MM (eds) Quaternary studies. R Soc N Z Bull 13:87–88

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica, soils, weathering processes and environment. Elsevier, New York, 368 pp

    Google Scholar 

  • Campbell IB, Balks MR, Claridge GGC (1993) A simple visual technique for estimating the impact of fieldwork on the terrestrial environment in ice-free areas of Antarctica. Polar Rec 29(171):321–328

    Article  Google Scholar 

  • Campbell IB, Claridge GGC, Balks MR (1994) The effects of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctica. Antarct Sci 6(3):307–314

    Article  Google Scholar 

  • Campbell IB, Claridge GGC, Balks MR (1998a) Short- and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Rec 34(188):15–24

    Article  Google Scholar 

  • Campbell IB, Claridge GGC, Campbell DI, Balks MR (1998b) Soil temperature and moisture properties of Cryosols of the Antarctic Cold Desert. Eurasian Soil Sci 31(5):600–604

    Google Scholar 

  • Cannone N, Wagner D, Hubberten HW, Guglielmin M (2008) Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma 144:50–65

    Article  CAS  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8(2):129–138

    Article  CAS  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic Dry Valleys landscape. Proc Natl Acad Sci (USA) 110:8990–8995

    Article  CAS  Google Scholar 

  • Chong CW, Pearce DA, Convey P, Tan IKP (2012) The identification of environmental parameters which could influence soil bacterial community composition on the Antarctic Peninsula—a statistical approach. Antarct Sci 24:249–258

    Article  Google Scholar 

  • Chong CW, Tan GYA, Wong RCS, Riddle MJ, Tan IKP (2009) DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica. Polar Biol 32:853–860

    Article  Google Scholar 

  • Chown SL, Huiskes AHL, Gremmen NJM, Lee JE, Terauds A, Crosbie K, Frenot Y, Hughes KA, Imura S, Kiefer K, Lebouvier M, Raymond B, Tsujimoto M, Ware C, Van de Vijver B, Bergstron DM (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Natl Acad Sci 109(13):4938–4943

    Article  CAS  Google Scholar 

  • Claridge GGC, Campbell IB, Powell HKJ, Amin ZH, Balks MR (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Antarct Sci 7:9–14

    Article  Google Scholar 

  • Claridge GGC, Campbell IB, Balks MR (1999) Movement of salts in Antarctic soils: experiments using lithium chloride. Permafrost Periglac Process 10:223–233

    Article  Google Scholar 

  • Cockell CS, Mckay CP, Warren-Rhodes K, Horneck G (2008) Ultraviolet radiation-induced limitation to epilithic microbial growth in and deserts – Dosimetric experiments in the hyperarid core of the Atacama Desert. J Photochem Photobiol B-Biol 90(2):79–87

    Article  CAS  Google Scholar 

  • Committee for Environmental Protection (2005) Guidelines for environmental impact assessment in Antarctica, resolution 4. CEP Handbook, 2007

    Google Scholar 

  • Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, Vincent WF (2011) Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol 19:540–548

    Article  CAS  Google Scholar 

  • Delille D (2000) Response of Antarctic soil bacterial assemblages to contamination by diesel fuel and crude oil. Microb Ecol 40:159–168

    CAS  Google Scholar 

  • Duncan SM, Minasaki R, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA (2008) Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation. Antarct Sci 21:1–8

    Google Scholar 

  • Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34:1669–1677

    Article  Google Scholar 

  • Flocco CG, Gomes NCM, Mac Cormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the maritime Antarctic. Environ Microbiol 11:700–714

    Article  CAS  Google Scholar 

  • Foong CP, Ling CMWV, Gonález M (2010) Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci 4:263–273

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1997) Low diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  Google Scholar 

  • Frysinger GS, Gaines RB, Xu L, Reddy CM (2003) Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environ Sci Technol 37:1653–1662

    Article  CAS  Google Scholar 

  • Ganzert L, Lipski A, Hubberten HW, Wagner D (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. Microbiol Ecol 76:476–491

    Article  CAS  Google Scholar 

  • Gennari M, Abbate C, La Porta V, Baglieri A (2007) Microbial response to Na2SO4 additions in a volcanic soil. Arid Land Res Manag 21:211–227

    Article  CAS  Google Scholar 

  • Gremmen NJM, Smith VR, van Tongeren OFR (2003) Impact of trampling on the vegetation of subantarctic Marion Island. Arct Antarct Alp Res 35(4):42–446

    Article  Google Scholar 

  • Greenslade P, Convey P (2012) Exotic Collembola on subantarctic islands: pathways, origins and Biology. Biol Invasions 14:405–417

    Article  Google Scholar 

  • Grosse G, Romanovsky VE, Jorgenson T, Walter AK, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. EOS Trans Am Geophys Union 92(9):73–74

    Article  Google Scholar 

  • Guerra MBB, Schaefer CEGR, de Freitas Rosa P, Simas FNB, Pereira TTC, Pereira-Filho ER (2011) Heavy metal contamination in century-old manmade technosols of Hope Bay, Antarctic Peninsula. Water Air Soil Pollut 222:91–102

    Article  CAS  Google Scholar 

  • Haff PK, Werner BT (1996) Dynamical processes on desert pavements and the healing of surficial disturbances. Quatern Res 45:38–46

    Article  Google Scholar 

  • Harris CM (1998) Science and environmental management in the McMurdo Dry Valleys, Antarctica. In: Priscu J (eds) Ecosystem processes in a polar desert: the McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72, American Geophysical Union, Washington

    Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic Press, San Diego

    Google Scholar 

  • Hopkins DW, Sparrow AD, Novis PM, Gregorich EG, Elberling B, Greenfield LG (2006) Controls on the distribution of productivity and organic resources in Antarctic dry valley soils. Proc R Soc Lond Ser B 273:2687–2695

    Article  CAS  Google Scholar 

  • Hughes KA (2006) Bird Island path survey. British Antarctic Survey, Internal report, Cambridge, 53 pp

    Google Scholar 

  • Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372:539–548

    Article  CAS  Google Scholar 

  • Hughes KA (2010) How committed are we to monitoring human impacts in Antarctica? Environ Res Lett 5(4):3

    Google Scholar 

  • Hughes KA, Convey P (2010) The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environ Change-Human Policy Dimens 20(1):96–112

    Article  Google Scholar 

  • Hughes KA, Lee JE, Tsujimoto M, Imura S, Bergstrom DM, Ware C, Lebouvier M, Huiskes AHL, Gremmen NJM, Frenot Y, Bridge PD, Chown SL (2011) Food for thought: risks of non-native species transfer to the Antarctic region with fresh produce. Biol Conserv 144:1682–1689

    Article  Google Scholar 

  • Hughes KA, Worland RM, Thorne MAS, Convey P (2013) The non-native chrinomid Eretmoptera murphyi in Antarctica; erosion of the barriers to invasion. Biol Invasions 15(2):269–281

    Article  Google Scholar 

  • International Association of Antarctic Tour Operators (IAATO) (2012) Visitor guidelines. http://iaato.org/visitor-guidelines. Accessed 4 Nov 2013

  • International Association of Antarctic Tour Operators (IAATO) (2013) Tourism statistics. http://iaato.org/tourism-statistics. Accessed 4 Nov 2013

  • Jabour J (2009) National Antarctic Programs and their impact on the environment. In: Kerry K, Riddle M (eds) Health of Antarctic wildlife. Springer, Berlin, pp 211–229

    Chapter  Google Scholar 

  • Jurelevicus D, Cotta SR, Peixoto R, Rosado AS, Seldin L (2012a) Distribution of alkane-degrading bacterial communities in soils from King George Island, Maritime Antarctic. Eur J Soil Biol 51:37–44

    Article  CAS  Google Scholar 

  • Jurelevicus D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012b) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9

    Article  Google Scholar 

  • Kennicutt MC, Klein A, Montagna P, Sweet S, Wade T, Palmer T, Denoux G (2010) Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environ Res Lett 5(3):1–10

    Article  CAS  Google Scholar 

  • Kerry KR, Riddle MJ (2009) Health of Antarctic wildlife. A challenge for science and policy. Springer, New York

    Book  Google Scholar 

  • Kiernan K, McConnell A (2001) Land surface rehabilitation research in Antarctica. Proc Linnean Soc NSW 123:101–118

    Google Scholar 

  • Kim M, Kennicutt MC II, Qian Y (2006) Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica. Mar Pollut Bull 52:1585–1590

    Article  CAS  Google Scholar 

  • Klein AG, Sweet ST, Wade TL, Sericano JL, Kennicutt MC II (2012) Spatial patterns of total petroleum hydrocarbons in the terrestrial environment at McMurdo Station, Antarctica. Antarct Sci 24:450–466

    Article  Google Scholar 

  • Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  CAS  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465

    Article  CAS  Google Scholar 

  • McFadden LD, Wells SG, Jercinovich MJ (1987) Influences of aeolian and pedogenic processes on the origin and evolution of the desert pavement. Geology 15:504–509

    Article  CAS  Google Scholar 

  • McLeod M (2012) Soil and permafrost distribution, soil characterisation and soil vulnerability to human foot trampling, Wright Valley, Antarctica. PhD thesis, University of Waikato, New Zealand, 219 pp

    Google Scholar 

  • Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012) Occurrence of the non-native bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723

    Article  Google Scholar 

  • Naveen R (1996) Human activity and disturbance: building an Antarctic site inventory. In: Ross R, Hofman E, Quetin L (eds) Foundations for ecosystem research in the Western Antarctic Peninsula region. American Geophysical Union, Washington, DC, pp 389–400

    Chapter  Google Scholar 

  • Norbek KJ, Blomberg A (1998) Amino acid uptake is strongly affected during exponential growth of Saccharomyces cerevisiae in 0.7 M NaCl medium. FEMS Microbial Letters 158:121–126

    Article  Google Scholar 

  • Okere UV, Cabrerizo A, Dachs J, Jones KC, Semple KT (2012) Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica. FEMS Microbiol Lett 329:69–77

    Article  CAS  Google Scholar 

  • Olech M, Chwedorzewska KJ (2011) The first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarct Sci 23:153–154

    Article  Google Scholar 

  • O’Neill TA, Balks MR, López-Martínez J (2012a) The effectiveness of environmental impact assessments on visitor activity in the Ross Sea Region of Antarctica. In: Lundmark L, Lemelin R, Müller D (eds) Issues in polar tourism: communities, environments, politics. Springer, Berlin, pp 87–110

    Google Scholar 

  • O’Neill TA, Balks MR, López-Martínez J, McWhirter J (2012b) A method for assessing the physical recovery of Antarctic desert pavements following human-induced disturbances: a case study in the Ross Sea region of Antarctica. J Environ Manag 112:415–428

    Article  Google Scholar 

  • O’Neill TA (2013) Soil physical impacts and recovery rates following human-induced disturbances in the Ross Sea region of Antarctica. PhD thesis, University of Waikato, New Zealand, 369 pp

    Google Scholar 

  • O’Neill TA, Balks MR, López-Martínez J (2013a) Soil surface recovery from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarct Sci 25(4):514–530

    Article  Google Scholar 

  • O’Neill TA, Balks MR, Stevenson B, López-Martínez J, Aislabie J, Rhodes P (2013b) The short-term effects of surface soil disturbance on soil bacterial community structure at an experimental site near Scott Base, Antarctica. Polar Biol 36(7):985–996

    Article  Google Scholar 

  • Pertierra LR, Hughes KA, Benayas J, Justel A, Quesada A (2013) Environmental management of a scientific field camp in Maritime Antarctica: reconciling research impacts with conservation goals in remote ice-free areas. Antarct Sci 25(2):307–317

    Article  Google Scholar 

  • Ritchie GD (2003) Biological and health effects of exposure to kerosene-based jet fuels and performance additives. J Toxicol Environ Health, Part B 6:357–451

    Article  CAS  Google Scholar 

  • Roura R (2004) Monitoring and remediation of hydrocarbon contamination at the former site of Greenpeace’s World Park Base, Cape Evans, Ross Island, Antarctica. Polar Rec 40(212):51–67

    Article  Google Scholar 

  • Saul DJ, Aislabie J, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  Google Scholar 

  • Santos IR, Silva EV, Schaefer CE, Albuquerque MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50(2):185–194

    Article  CAS  Google Scholar 

  • Schimel DS, Parton WJ (1986) Microclimatic controls of nitrogen mineralization and nitrification in shortgrass steppe soils. Plant Soil 93(3):347–357

    Article  Google Scholar 

  • Scott JJ, Kirkpatrick JB (1994) Effects of human trampling on sub-Antarctic vegetation of Macquarie Island. Polar Record 30:207–220

    Article  Google Scholar 

  • Secretariat of the Antarctic Treaty (SAT) (1991) Protocol on environmental protection to the Antarctic Treaty. http://www.ats.aq/documents/recatt/Att006_e.pdf. Accessed 1 Aug 2013

  • Sheppard DS, Claridge GGC, Campbell IB (2000) Metal contamination of soils at Scott Base, Antarctica. Appl Geochem 15:513–530

    Article  CAS  Google Scholar 

  • Smith RIL, Richardson M (2011) Fuegian plants in Antarctica-natural or anthropogenically-assisted immigrants? Biol Invasions 13:1–5

    Article  Google Scholar 

  • Snape I, Morris CE, Cole CM (2001) The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica. Cold Reg Sci Technol 32(2–3):157–174

    Article  Google Scholar 

  • Sparrow AD, Gregorich EG, Hopkins DW, Novis P, Elberling B, Greenfield LG (2011) Resource limitations on soil microbial activity in an Antarctic dry valley. Soil Biol Biochem 75:2188–2197

    CAS  Google Scholar 

  • Stark SC, Snape I, Graham NJ, Brennan JC, Gore DB (2008) Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica. J Environ Monit 10:60–70

    Article  CAS  Google Scholar 

  • Summerson R, Bishop ID (2011) Aesthetic value in Antarctica: beautiful or sublime? Polar J 1:225–250

    Article  Google Scholar 

  • Summerson R, Bishop ID (2012) The impact of human activities on wilderness and aesthetic values in Antarctica. Polar Res 31:1–21

    Article  Google Scholar 

  • Tejedo P, Justel A, Rico E, Benayas J, Quesada A (2005) Measuring impacts on soils by human activity in an Antarctic specially protected area. Terra Antarct 12:57–62

    Google Scholar 

  • Tejedo P, Justel A, Benayas J, Rico E, Convey P, Quesada A (2009) Soil trampling in an Antarctic specially protected area: tools to assess levels of human impact. Antarct Sci 21(3):229–236

    Article  Google Scholar 

  • Tin T, Fleming L, Hughes KA, Ainsley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Review: impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33

    Article  Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Wall DH (2007) Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B Biol Sci 362:2291–2306

    Article  Google Scholar 

  • Waterhouse EJ (ed) (2001) Ross Sea Region 2001: a state of the environment report for the Ross Sea Region of Antarctica. New Zealand Antarctic Institute, Christchurch

    Google Scholar 

  • Webster J, Webster K, Nelson P, Waterhouse E (2003) The behaviour of residual contaminants at a former station site, Antarctica. Environ Pollut 123(2):163–179

    Article  CAS  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari V, Labbe D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:41–150

    Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. In: Marshall KC (ed) Advances in microbial ecology, vol 2. Plenum Press, New York, pp 71–146

    Chapter  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  CAS  Google Scholar 

  • Zabinski CA, Gannon JE (1997) Effects of recreational impacts on soil microbial communities. Environ Manag 21(2):233–238

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Roberta Farrell for helpful comments on this chapter. This review was partially supported by funding from the Ministry of Business, Innovation and Employment (CO9X1001).

Photo Credits

Photographs in Figs. 15.1, 15.3, 15.4, 15.5, 15.7, 15.8, 15.9 and 15.10 are reproduced with permission of Megan Balks. The photograph in Fig. 15.2 is reproduced with permission of Tanya O’Neill. The photograph in Fig. 15.6 is reproduced with permission of Jeronimo López-Martínez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Neill, T.A., Aislabie, J., Balks, M.R. (2015). Human Impacts on Soils. In: Bockheim, J. (eds) The Soils of Antarctica. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-05497-1_15

Download citation

Publish with us

Policies and ethics