Advertisement

Nonterminal Complexity of Weakly Conditional Grammars

  • Sherzod Turaev
  • Mohd Izzuddin Mohd Tamrin
  • Norsaremah Salleh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8397)

Abstract

A weakly conditional grammar is specified as a pair K = (G, G′) where G is a context-free grammar, and G′ is a regular grammar such that a production rule of G is only applicable to the sentential form if it belongs to the language generated by G′. The nonterminal complexity Var(K) of the grammar K is defined as the sum of the numbers of nonterminals of G and G′. This paper studies the nonterminal complexity of weakly conditional grammars, and it proves that every recursively enumerable language can be generated by a weakly conditional grammar with no more than ten nonterminals. Moreover, it shows that the number of nonterminals in such grammars without erasing rules leads to an infinite hierarchy of families of languages generated by weakly conditional grammars.

Keywords

Production Rule Regular Language Sentential Form Descriptional Complexity Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friś, J.: Grammars with partial ordering of rules. Information and Control 12, 415–425 (1968)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Salomaa, A.: Formal languages. Academic press, New York (1973)Google Scholar
  3. 3.
    Kelemen, J.: Conditional grammars: Motivations, definitions, and some properties. In: Proc. Conf. Automata, Languages and Mathematical Sciences, pp. 110–123 (1984)Google Scholar
  4. 4.
    Meduna, A.: Generalized forbidding grammars. International Journal of Computer Mathematics 36(1-2), 31–38 (1990)CrossRefMATHGoogle Scholar
  5. 5.
    Meduna, A., Gopalaratnam, A.: On semi-conditional grammars with productions having either forbidding or permitting conditions. Acta Cybernetica 11(4), 307–323 (1994)MATHMathSciNetGoogle Scholar
  6. 6.
    Navratil, E.: Context-free grammars with regular conditions. Kybernetika 2, 118–126 (1970)MathSciNetGoogle Scholar
  7. 7.
    Pǎun, G.: A variant of random context grammars: Semi-conditional grammars. Theoretical Computer Science 41, 1–17 (1985)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Král, J.: A note on grammars with regular restrictions. Kybernetika 9(3), 159–161 (1973)MATHMathSciNetGoogle Scholar
  9. 9.
    Pǎun, G.: On the generative capacity of conditional grammars. Information and Control 43, 178–186 (1979)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Meduna, A., Švec, M.: Reduction of simple semi-conditional grammars with respect to the number of conditional productions. Acta Cybernetica 15, 353–360 (2002)MATHMathSciNetGoogle Scholar
  11. 11.
    Meduna, A., Švec, M.: Descriptional complexity of generalized forbidding grammars. International Journal of Computer Mathematics 80(1), 11–17 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated by context conditions. Theoretical Computer Science 330, 361–373 (2005)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Turaev, S., Dassow, J., Manea, F., Selamat, M.: Language classes generated by tree controlled grammars with bounded nonterminal complexity. Theoretical Computer Science 449, 134–144 (2012)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Turaev, S., Dassow, J., Selamat, M.H.: Language classes generated by tree controlled grammars with bounded nonterminal complexity. In: Holzer, M., Kurtib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 289–300. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Turaev, S., Dassow, J., Selamat, M.: Nonterminal complexity of tree controlled grammars. Theoretical Computer Science 412, 5789–5795 (2011)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dassow, J., Pǎun, G.: Regulated rewriting in formal language theory. Springer, Berlin (1989)CrossRefGoogle Scholar
  17. 17.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of formal languages, pp. 1–3. Springer (1997)Google Scholar
  18. 18.
    Geffert, V.: Context-free-like forms for phrase-structure grammars. In: Chytil, M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 309–317. Springer, Heidelberg (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sherzod Turaev
    • 1
  • Mohd Izzuddin Mohd Tamrin
    • 2
  • Norsaremah Salleh
    • 1
  1. 1.Department of Computer Science, Kulliyyah of Information and Communication TechnologyInternational Islamic University MalaysiaKuala LumpurMalaysia
  2. 2.Department of Information Systems , Kulliyyah of Information and Communication TechnologyInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations