Skip to main content

Comparative Study on Bio-inspired Global Optimization Algorithms in Minimal Phase Digital Filters Design

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8398))

Included in the following conference series:

  • 2805 Accesses

Abstract

In this paper, a comparative study is presented on various bio-inspired global optimization algorithms in the problem of digital filters design. The designed digital filters are minimal phase infinite impulse response digital filters with non-standard amplitude characteristics. Due to the non-standard amplitude characteristics, typical filter approximations cannot be used to solve this design problem. In our comparative study, we took into consideration the four most popular bio-inspired global optimization techniques. We examined bio-inspired algorithms such as: an ant colony optimization algorithm for a continuous domain, a particle swarm optimization algorithm, a genetic algorithm and a differential evolution algorithm. After experiments, we observed that the differential evolution algorithm is the most effective one for the problem of the digital filters design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shenoi, B.A.: Introduction to Digital Signal Processing and Filter Design. John Wiley & Sons, New Jersey (2006)

    Google Scholar 

  2. Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall (2004)

    Google Scholar 

  3. Chen, S., Istepanian, R.H., Luk, B.L.: Digital IIR filter design using adaptive simulated annealing. Digital Signal Processing 11(3), 241–251 (2001)

    Article  Google Scholar 

  4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company Inc. (1989)

    Google Scholar 

  6. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  9. Rainer, S., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  Google Scholar 

  10. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)

    Google Scholar 

  11. Socha, K., Doringo, M.: Ant colony optimization for continous domains. European Journal of Operational Research 185(3), 1155–1173 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Słowik, A., Białko, M.: Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 470–478. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Slowik, A.: Application of Evolutionary Algorithm to Design of Minimal Phase Digital Filters with Non-Standard Amplitude Characteristics and Finite Bits Word Length. Bulletin of The Polish Academy of Science - Technical Science 59(2), 125–135 (2011), doi:10.2478/v10175-011-0016-z

    Google Scholar 

  14. Slowik, A., Bialko, M.: Design and Optimization of IIR Digital Filters with Non-standard Characteristics Using Continuous Ant Colony Optimization Algorithm. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 395–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Bocewicz, G., Wójcik, R., Banaszak, Z.: AGVs distributed control subject to im- precise operation times. In: Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 421–430. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Bocewicz, G., Banaszak, Z.: Declarative modeling of multimodal cyclic processes. In: Golinska, P., Fertsch, M., Marx-Gomez, J. (eds.) Information Technologies in Environmental Engineering. Environmental Science and Engineering - Environmental Engineering, vol. 3, pp. 551–568. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Ratuszniak, P.: Processor Array Design with the Use of Genetic Algorithm. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 238–246. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Słowik, A., Białko, M.: Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 468–473. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73 (May 1998)

    Google Scholar 

  20. Karaboga, N.: Digital IIR filter design using differential evolution algorithm. EURASIP Journal on Applied Signal Processing 8, 1269–1276 (2005)

    Article  Google Scholar 

  21. Karaboga, N., Cetinkaya, B.: Performance comparison of genetic and differential Evolution algorithms for digital FIR filter design. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 482–488. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Karaboga, N., Kalinli, A., Karaboga, D.: Designing digital IIR filters using ant colony optimisation algorithm. Engineering Applications of Artificial Intelligence 17(3), 301–309 (2004)

    Article  Google Scholar 

  23. Dai, C., Chen, W., Zhu, Y.: Seeker optimization algorithm for digital iir filter design. IEEE Transactions on Industrial Electronics 51, 1710–1718 (2010)

    Google Scholar 

  24. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital iir filters. Journal of the Franklin Institute 346, 328–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Słowik, A. (2014). Comparative Study on Bio-inspired Global Optimization Algorithms in Minimal Phase Digital Filters Design. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds) Intelligent Information and Database Systems. ACIIDS 2014. Lecture Notes in Computer Science(), vol 8398. Springer, Cham. https://doi.org/10.1007/978-3-319-05458-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05458-2_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05457-5

  • Online ISBN: 978-3-319-05458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics