Skip to main content

Algebraic Complexity Classes

  • Chapter
  • First Online:
Perspectives in Computational Complexity

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 26))

Abstract

This survey describes, at an introductory level, the algebraic complexity framework originally proposed by Leslie Valiant in 1979, and some of the insights that have been obtained more recently.

The idea for writing this survey came while the author was working on the Indo-French CEFIPRA-supported project 4702-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, P.B. Miltersen, On the complexity of numerical analysis. SIAM J. Comput. 38(5) 1987–2006 (2009)

    Google Scholar 

  2. E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits: depth reduction and size lower bounds. Theoret. Comput. Sci. 209, 47–86 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits: Depth reduction and size lower bounds. Theor. Comput. Sci. 209(1–2) 47–86 (1998)

    Google Scholar 

  4. M. Agrawal, V. Vinay, Arithmetic circuits: a chasm at depth four, in FOCS, pp. 67–75 (2008). See also ECCC TR15-062, 2008

    Google Scholar 

  5. E. Allender, F. Wang, On the power of algebraic branching programs of width two. ICALP 1, 736–747 (2011)

    MathSciNet  Google Scholar 

  6. D.A. Barrington, Bounded-width polynomial size branching programs recognize exactly those languages in NC\(^1\). J. Comput. Syst. Sci. 38, 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory (Springer, Berlin, 1997)

    Google Scholar 

  8. I. Briquel, P. Koiran, A dichotomy theorem for polynomial evaluation, in MFCS, pp. 187–198 (2009)

    Google Scholar 

  9. I. Briquel, P. Koiran, K. Meer, On the expressive power of cnf formulas of bounded tree- and clique-width. Discrete Appl. Math. 159(1), 1–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Bläser. Noncommutativity makes determinants hard, in Proceedings of ICALP, vol. 7965 of Lecture Notes in Computer Science, pp. 172–183, Springer, ECCC TR 2012–142 (2013)

    Google Scholar 

  11. M. Ben-Or, R. Cleve, Computing algebraic formulas using a constant number of registers. SIAM J. Comput. 21, 54–58 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(12) 1–45 (1998)

    Google Scholar 

  13. R.P. Brent, The parallel evaluation of general arithmetic expressions. J. ACM 21, 201–206 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, vol. 7 of Algorithms and Computation in Mathematics (Springer, Berlin, 2000)

    Google Scholar 

  15. P. Bürgisser, Cook’s versus Valiant’s hypothesis. Theor. Comput. Sci. 235(1), 71–88 (2000)

    Google Scholar 

  16. P. Bürgisser, On defining integers and proving arithmetic circuit lower bounds. Comput. Complex. 18(1), 81–103 (2009)

    Google Scholar 

  17. J.-Y. Cai, A note on the determinant and permanent problem. Inf. Comput. 84(1), 119–127 (1990)

    Google Scholar 

  18. J.-Y. Cai, X. Chen, D. Li, Quadratic lower bound for permanent versus determinant in any characteristic. Comput. Complex. 19(1), 37–56 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Capelli, A. Durand, S. Mengel, The arithmetic complexity of tensor contractions, in STACS, vol. 20 of LIPIcs, pp. 365–376 (2013)

    Google Scholar 

  20. Q. Cheng, On the ultimate complexity of factorials. Theor. Comput. Sci. 326(1–3), 419–429 (2004)

    Article  MATH  Google Scholar 

  21. L. Csanky, Fast parallel inversion algorithm. SIAM J. Comput. 5, 818–823 (1976)

    MathSciNet  Google Scholar 

  22. C. Damm, DET= \({\rm L}^{\# \rm {L}}\). Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt-Universität zu Berlin (1991)

    Google Scholar 

  23. A. Durand, S. Mengel, On polynomials defined by acyclic conjunctive queries and weighted counting problems. CoRR abs/1110.4201 (2011)

    Google Scholar 

  24. Z. Dvir, G. Malod, S. Perifel, A. Yehudayoff, Separating multilinear branching programs and formulas, in STOC, pp. 615–624 (2012)

    Google Scholar 

  25. W. de Melo, B.F. Svaiter, The cost of computing integers. Proc. Am. Math. Soc. 124(5), 1377–1378 (1996)

    Article  MATH  Google Scholar 

  26. H. Fournier, N. Limaye, G. Malod, S. Srinivasan, Lower bounds for depth 4 formulas computing iterated matrix multiplication. Electron. Colloquium Comput. Complex. (ECCC) 20 100 (2013) to appear in STOC 2014

    Google Scholar 

  27. H. Fournier, G. Malod, S. Mengel, Monomials in arithmetic circuits: complete problems in the counting hierarchy, in STACS, pp. 362–373 (2012)

    Google Scholar 

  28. B. Grenet, E. Kaltofen, P. Koiran, N. Portier, Symmetric determinantal representation of weakly-skew circuits, in STACS, pp. 543–554 (2011)

    Google Scholar 

  29. A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Approaching the chasm at depth four, in IEEE Conference on Computational Complexity, (2013)

    Google Scholar 

  30. A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Arithmetic circuits: a chasm at depth three, in IEEE Foundations of Computer Science (FOCS), ECCC 2013–026 (2013)

    Google Scholar 

  31. B. Grenet, T. Monteil, S. Thomassé, Symmetric determinantal representations in characteristic 2. Linear Alg. Appl. 439(5), 1364–1381 (2013)

    Article  MATH  Google Scholar 

  32. B. Grenet, Représentation des polynômes, algorithmes et bornes infÃrieures. Ph.D. thesis, École Normale SupÃrieure de Lyon, (2012)

    Google Scholar 

  33. B. Grenet, An Upper Bound for the Permanent Versus Determinant Problem manuscript, (2012)

    Google Scholar 

  34. L. Hyafil, On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8(2), 120–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. M.J. Jansen, Lower bounds for syntactically multilinear algebraic branching programs, in MFCS, vol. 5162 of Lecture Notes in Computer Science, pp. 407–418 (Springer, Berlin, 2008)

    Google Scholar 

  36. M. Jansen, M. Mahajan, B.V. Raghavendra Rao, Resource trade-offs in syntactic multilinear arithmetic circuits. Computational Complexity 22(3), 517–564 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. K. Kalorkoti, A lower bound for the formula size of rational functions. SIAM J. Comput. 14(3), 678–687 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Kayal, Algorithms for arithmetic circuits. Electron. Colloquium Comput. Complex. (ECCC) 17 73 (2010)

    Google Scholar 

  39. E. Kaltofen, P.Koiran, Expressing a fraction of two determinants as a determinant, in ISSAC, pp. 141–146, ACM (2008)

    Google Scholar 

  40. P. Koiran, Valiant’s model and the cost of computing integers. Comput. Complex. 13(3–4), 131–146 (2005)

    Article  MathSciNet  Google Scholar 

  41. P. Koiran, Complexity of arithmetic circuits (a skewed perspective), in Slides from Dagstuhl seminar 10481. DROPS, 2010. http://www.dagstuhl.de/Materials/Files/10/10481/10481.KoiranPascal.Slides.pdf

  42. P. Koiran, Arithmetic circuits: the chasm at depth four gets wider. Theor. Comput. Sci. 448, 56–65 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Malod, PolynoĹmes et coefficients, Ph.D. thesis, University Claude Bernard Ü Lyon 1, (2003)

    Google Scholar 

  44. S. Mengel, Characterizing arithmetic circuit classes by constraint satisfaction problems—(extended abstract). ICALP 1, 700–711 (2011)

    MathSciNet  Google Scholar 

  45. R. Meshulam, On two extremal matrix problems. Linear Algebra Appl. 114(115), 261–271 (1989). Special Issue Dedicated to A.J. Hoffman

    Google Scholar 

  46. M. Marcus, H. Minc, On the relation between the determinant and the permanent. Ill. J. Math. 5, 376–381 (1961)

    MATH  MathSciNet  Google Scholar 

  47. C.G.T. de A. Moreira, On asymptotic estimates for arithmetic cost functions. Proc. Am. Math. Soc. 125(2) 347–353 (1997)

    Google Scholar 

  48. G. Malod, N. Portier, Characterizing valiant’s algebraic complexity classes. J. Complex. 24(1), 16–38 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  49. T. Mignon, N. Ressayre, A quadratic bound for the determinant and permanent problem, in International Mathematics Research Notices, pp. 2004–4241, (2004)

    Google Scholar 

  50. M. Mahajan, V. Vinay, Determinant: combinatorics, algorithms, complexity. Chicago J. Theor. Comput. Sci. http://www.cs.uchicago.edu/publications/cjtcs, 1997:5, Dec 1997. Preliminary version in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms SODA, pp. 730–738 (1997)

  51. G. Pólya. Aufgabe 424. Archiv der Mathematik und Physik 3(20) 271 (1913)

    Google Scholar 

  52. B.V. Raghavendra Rao, A Study of Width Bounded Arithmetic Circuits and the Complexity of Matroid Isomorphism, Ph.D. thesis. The Institute of Mathematical Sciences, Chennai, India., 2010. http://www.imsc.res.in/xmlui/handle/123456789/177

  53. R. Raz, Separation of multilinear circuit and formula size. Theory Comput. 2(1) 121–135 (2006). preliminary version in FOCS 2004

    Google Scholar 

  54. R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM, 56(2), (2009). preliminary version in STOC 2004

    Google Scholar 

  55. R. Raz, Elusive functions and lower bounds for arithmetic circuits. Theory Comput. 6(1), 135–177 (2010)

    Article  MathSciNet  Google Scholar 

  56. R. Raz, A. Shpilka, A. Yehudayoff, A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM J. Comput. 38(4), 1624–1647 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  57. R. Raz, A. Yehudayoff, Balancing syntactically multilinear arithmetic circuits. Comput. Complex. 17(4), 515–535 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  58. R. Raz, A. Yehudayoff, Lower bounds and separations for constant depth multilinear circuits. Comput. Complex. 18(2), 171–207 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  59. H.J. Ryser, Combinatorial Mathematics (Carus mathematical monographs, Mathematical Association of America, 1963)

    Google Scholar 

  60. J. Walter, Savitch, relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

    Article  Google Scholar 

  61. V. Strassen, Vermeidung von divisionen. J. Reine U. Angew Math 264, 182–202 (1973)

    MathSciNet  Google Scholar 

  62. A. Shpilka, A. Yehudayoff, Arithmetic circuits: a survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)

    MathSciNet  Google Scholar 

  63. S. Tavenas, Improved bounds for reduction to depth 4 and depth 3, in MFCS, vol. 8087 of Lecture Notes in Computer Science, pp. 813–824 (Springer, Berlin, 2013)

    Google Scholar 

  64. S. Toda, Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Trans. Inf. Syst. E75-D, 116–124 (1992)

    Google Scholar 

  65. L.G. Valiant, Completeness classes in algebra, in STOC, pp. 249–261 (1979)

    Google Scholar 

  66. L.G. Valiant, Reducibility by algebraic projections, in Logic and Algorithmic: International Symposium in honour of Ernst Specker, vol. 30, pp. 365–380. Monograph. de l’Enseign. Math. (1982)

    Google Scholar 

  67. L.G. Valiant, Why is boolean complexity theory difficult? in Boolean Function Complexity, ed. by M.S. Paterson (Cambridge University Press, London Mathematical Society Lecture Notes Series 169, 1992)

    Google Scholar 

  68. H. Venkateswaran, Circuit definitions of nondeterministic complexity classes. SIAM J. Comput. 21, 655–670 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  69. V. Vinay, Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits, in Proceedings of 6th Structure in Complexity Theory Conference, pp. 270–284 (1991)

    Google Scholar 

  70. H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach (Springer, New York, 1999)

    Google Scholar 

  71. L.G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff, Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

    Google Scholar 

  72. J. von zur Gathen, Permanent and determinant. Linear Algebra Appl. 96, 87–100 (1987)

    Google Scholar 

Download references

Acknowledgments

I thank Arvind and Manindra for inviting me to contribute to this volume in honour of Somenath Biswas, a wonderful professional colleague and friend. I thank CEFIPRA for supporting an Indo-French collaboration (project 4702-1); many of my ideas for how to present this survey were crystallised during my visit to University of Paris-Diderot during May–June 2012. I have picked material I found interesting, and have not really attempted an exhaustive coverage. I apologise in advance to those whose favourite results I have omitted. I gratefully acknowledge many insightful discussions with Eric Allender, V. Arvind, Hervé Fournier, Bruno Grenet, Nutan Limaye, Guillaume Malod, Stefan Mengel, Sylvain Perifel, B. V. Raghavendra Rao, Nitin Saurabh, Karteek Sreenivasaiah, Srikanth Srinivasan, V. Vinay. I thank the organisers of the Dagstuhl Seminars on Circuits, Logic and Games (Feb 2010) and Computational Counting (Dec 2010) for inviting me and giving me the opportunity to discuss these topics. The survey by Pascal Koiran at the Dagstuhl seminar on Computational Counting in Dec 2010 was particularly helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Mahajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahajan, M. (2014). Algebraic Complexity Classes. In: Agrawal, M., Arvind, V. (eds) Perspectives in Computational Complexity. Progress in Computer Science and Applied Logic, vol 26. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05446-9_4

Download citation

Publish with us

Policies and ethics