Skip to main content

Lower Bounds and Exact Solution Approaches

  • Chapter
  • First Online:
Book cover Handbook on Project Management and Scheduling Vol.1

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

  • 3943 Accesses

Abstract

Generalized precedence relations are temporal constraints in which the starting/finishing times of a pair of activities have to be separated by at least or at most an amount of time denoted as time lag (minimum time lag and maximum time lag, respectively). This chapter is devoted to project scheduling with generalized precedence relations with and without resource constraints. Attention is focused on lower bounds and exact algorithms. In presenting existing results on these topics, we concentrate on recent results obtained by ourselves. The mathematical models and the algorithms presented here are supported by extensive computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given resource k, let r k min be the maximum usage of this resource by a single activity, that is \(r_{k}^{\mathit{min}} =\max _{i\in V }r_{\mathit{ik}}\). Let r k max denote the peak demand of resource k in the earliest start schedule with infinite resource capacity. The resource strength of resource k is thus defined as \(RS_{k} = \frac{R_{k}-r_{k}^{\mathit{min}}} {r_{k}^{\mathit{max}}-r_{k}^{\mathit{min}}}\) (Kolish et al. 1995).

References

  • Ahuja RK, Magnanti T, Orlin J (1993) Network flows. Prentice Hall, New York

    Google Scholar 

  • Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource constraints and time windows. Ann Oper Res 16(1):201–240

    Article  Google Scholar 

  • Bianco L, Caramia M (2010) A new formulation of the resource-unconstrained project scheduling problem with generalized precedence relations to minimize the completion time. Networks 56(4):263–271

    Article  Google Scholar 

  • Bianco L, Caramia M (2011a) A new lower bound for the resource-constrained project scheduling problem with generalized precedence relations. Comput Oper Res 38(1):14–20

    Article  Google Scholar 

  • Bianco L, Caramia M (2011b) Minimizing the completion time of a project under resource constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR-Q J Oper Res 9(4):371–389

    Article  Google Scholar 

  • Bianco L, Caramia M (2012) An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations. Eur J Oper Res 219(1):73–85

    Article  Google Scholar 

  • Demeulemeester EL, Herroelen WS (1997a) New benchmark results for the resource-constrained project scheduling problem. Manage Sci 43(11):1485–1492

    Article  Google Scholar 

  • Demeulemeester EL, Herroelen WS (1997b) A branch-and-bound procedure for the generalized resource-constrained project scheduling problem. Oper Res 45(2):201–212

    Article  Google Scholar 

  • Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. Kluwer, Boston

    Google Scholar 

  • De Reyck B (1998) Scheduling projects with generalized precedence relations: exact and heuristic approaches. Ph.D. dissertation, Department of Applied Economics, Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • De Reyck B, Herroelen W (1998) A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. Eur J Oper Res 111(1):152–174

    Article  Google Scholar 

  • Dorndorf U (2002) Project scheduling with time windows. Physica, Heidelberg

    Book  Google Scholar 

  • Dorndorf U, Pesch E, Phan-Huy T (2000) A time-oriented branch-and-bound algorithm for resource-constrained project scheduling with generalised precedence constraints. Manage Sci 46(10):1365–1384

    Article  Google Scholar 

  • Elmaghraby SEE, Kamburowski J (1992) The analysis of activity networks under generalized precedence relations (GPRs). Manage Sci 38(9):1245–1263

    Article  Google Scholar 

  • Fest A, Möhring RH, Stork F, Uetz M (1999) Resource-constrained project scheduling with time windows: a branching scheme based on dynamic release dates. Technical Report 596, Technical University of Berlin, Berlin

    Google Scholar 

  • Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18(6):1138–1162

    Article  Google Scholar 

  • Hochbaum D, Naor J (1994) Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J Comput 23(6):1179–1192

    Article  Google Scholar 

  • Kelley JE (1963) The critical path method: resource planning and scheduling. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice-Hall Inc., Englewood Cliffs, pp 347–365

    Google Scholar 

  • Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to resource-constrained project scheduling. Eur J Oper Res 112(2):322–346

    Article  Google Scholar 

  • Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manage Sci 41(10):1693–1703

    Article  Google Scholar 

  • Moder JJ, Philips CR, Davis EW (1983) Project management with CPM, PERT and precedence diagramming, 3rd edn. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Möhring RH, Schulz AS, Stork F, Uetz M (1999) Resource-constrained project scheduling: computing lower bounds by solving minimum cut problems. Lecture notes in computer science, vol 1643. Springer, Berlin, pp 139–150

    Google Scholar 

  • Möhring RH, Schulz AS, Stork F, Uetz M (2003) Solving project scheduling problems by minimum cut computations. Manage Sci 49(3):330–350

    Article  Google Scholar 

  • Neumann K, Schwindt C, Zimmerman J (2003) Project scheduling with time windows and scarce resources, 2nd edn. LNEMS, vol 508. Springer, Berlin

    Google Scholar 

  • Radermacher FJ (1985) Scheduling of project networks. Ann Oper Res 4(1):227–252

    Article  Google Scholar 

  • Schwindt C (1996) ProGen/Max: generation of resource-constrained scheduling problems with minimal and maximal time lags. Technical Report WIOR-489, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Schwindt C (1998) Verfahren zur Lösung des ressourcenbeschränkten Projektdauerminimierungsproblems mit planungsabhängigen Zeitfenstern. Shaker, Aachen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Bianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bianco, L., Caramia, M. (2015). Lower Bounds and Exact Solution Approaches. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol.1. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05443-8_5

Download citation

Publish with us

Policies and ethics