Skip to main content

Integrated Column Generation and Lagrangian Relaxation Approach for the Multi-Skill Project Scheduling Problem

  • Chapter
  • First Online:

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

Abstract

This chapter introduces a procedure to solve the Multi-Skill Project Scheduling Problem. The problem combines both the classical Resource-Constrained Project Scheduling Problem and the multi-purpose machine model. The aim is to find a schedule that minimizes the completion time (makespan) of a project composed of a set of activities. Precedence relations and resources constraints are considered. In this problem, resources are staff members that master several skills. Thus, a given number of workers must be assigned to perform each skill required by an activity. Practical applications include the construction of buildings, as well as production and software development planning. We present an approach that integrates the utilization of Lagrangian relaxation and column generation for obtaining strong makespan lower bounds. Finally, we present the corresponding obtained results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Artigues C, Demassey S, Néron E, (2008) Resource-constrained project scheduling: models, algorithms, extensions and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Barahona F, Anbil R (2000) The volume algorithm: producing primal solutions with a subgradient method. Math Program 87:385–399

    Article  Google Scholar 

  • Barahona F, Jensen D (1998) Plant location with minimum inventory. Math Program 83:101–111

    Google Scholar 

  • Bard J, Purnomo H (2005) Preference scheduling for nurses using column generation. Eur J Oper Res 164:510–534

    Article  Google Scholar 

  • Barnhart C, Johnson E, Nemhauser G, Savelsbergh M, Vance P (1998) Branch-and-price: column generation for solving huge integer programs. Oper Res 46:316–329

    Article  Google Scholar 

  • Beliën J, Demeulemeester E (2007) On the trade-off between staff-decomposed and activity-decomposed column generation for a staff scheduling problem. Ann Oper Res 155:143–166

    Article  Google Scholar 

  • Bellenguez-Morineau O (2008) Methods to solve multi-skill project scheduling problem. 4OR-Q J Oper Res 6:85–88

    Google Scholar 

  • Bellenguez-Morineau O, Néron E (2005) Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In: Practice and theory of automated timetabling V. Lecture notes in computer science, vol 3616. Springer, Berlin, pp 229–243

    Google Scholar 

  • Bertsekas D (1999) Nonlinear programming. Athena Scientific, Belmont

    Google Scholar 

  • Bixby R, Gregory J, Lustig I, Marsten R, Shanno D (1992) Very large-scale linear programming: a case study in combining interior point and simplex methods. Oper Res 40:885–897

    Article  Google Scholar 

  • Brucker P, Knust S (2000) A linear programming and constraint propagation-based lower bound for the RCPSP. Eur J Oper Res 127:355–362

    Article  Google Scholar 

  • Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

    Article  Google Scholar 

  • Busacker R, Gowen P (1961) A procedure for determining a family of minimum-cost-flow patterns. Technical report 15, operations research office, Johns Hopkings University, Baltimore, MD

    Google Scholar 

  • Chen Z, Powell W (1999) A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem. Eur J Oper Res 116:220–232

    Article  Google Scholar 

  • Cordeau J, Laporte G, Pasin F, Ropke S (2010) Scheduling technicians and tasks in a telecommunications company. J Sched 13:1–17

    Article  Google Scholar 

  • Correia I, Lourenço L, Saldanha-da Gama F (2012) Project scheduling with flexible resources: formulation and inequalities. OR Spectr 34:635–663

    Article  Google Scholar 

  • Dantzig G, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8:101–111

    Article  Google Scholar 

  • Dohn A, Kolind E, Clausen J (2009) The manpower allocation problem with time windows and job-teaming constraints: a branch-and-price approach. Comput Oper Res 36:1145–1157

    Article  Google Scholar 

  • Fábián C (2000) Bundle-type methods for inexact data. Cent Eur J Oper Res 8:35–55

    Google Scholar 

  • Fırat M, Hurkens C (2012) An improved MIP-based approach for a multi-skill workforce scheduling problem. J Sched 15:363–380

    Article  Google Scholar 

  • Gélinas S, Soumis F (2005) Dantzig-Wolfe decomposition for job shop scheduling. In: Desaulniers G, Desrosiers J, Solomon MM (eds) Column generation. Springer, New York, pp 271–302

    Chapter  Google Scholar 

  • Gilmore P, Gomory R (1961) A linear programming approach to the cutting-stock problem. Oper Res 9:849–859

    Article  Google Scholar 

  • Goffin J, Vial J (2002) Convex nondifferentiable optimization: a survey focused on the analytic center cutting plane method. Optim Method Softw 17:805–867

    Article  Google Scholar 

  • Gutjahr W, Katzensteiner S, Reiter P, Stummer C, Denk M (2008) Competence-driven project portfolio selection, scheduling and staff assignment. Cent Eur J Oper Re 16:281–306

    Article  Google Scholar 

  • Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–14

    Article  Google Scholar 

  • Heimerl C, Kolisch R (2010) Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectr 32:343–368

    Article  Google Scholar 

  • Held M, Karp R (1971) The traveling-salesman problem and minimum spanning trees: part II. Math Program 1:6–25

    Article  Google Scholar 

  • Held M, Wolfe P, Crowder H (1974) Validation of subgradient optimization. Math Program 6: 62–88

    Article  Google Scholar 

  • Huisman D, Jans R, Peeters M, Wagelmans A (2005) Combining column generation and lagrangian relaxation. In: Desaulniers G, Desrosiers J, Solomon MM (eds) Column generation. Springer, New York, pp 247–270

    Chapter  Google Scholar 

  • Ioachim I, Desrosiers J, Soumis F, Belanger N (1999) Fleet assignment and routing with schedule synchronization constraints. Eur J Oper Res 119:75–90

    Article  Google Scholar 

  • Jans R, Degraeve Z (2004) An industrial extension of the discrete lot-sizing and scheduling problem. IIE Trans 36:47–58

    Article  Google Scholar 

  • Jaumard B, Semet F, Vovor T (1998) A generalized linear programming model for nurse scheduling. Eur J Oper Res 107:1–18

    Article  Google Scholar 

  • Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: theory and applications, part I and II. Ann Oper Res 128:1–4

    Article  Google Scholar 

  • Li H, Womer K (2009) Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J Sched 12:281–298

    Article  Google Scholar 

  • Lübbecke M, Desrosiers J (2005) Selected topics in column generation. Oper Res 53:1007–1023

    Article  Google Scholar 

  • Mason A, Smith M (1998) A nested column generator for solving rostering problems with integer programming. In: Proceedings of international conference on optimisation: techniques and applications, pp 827–834

    Google Scholar 

  • Mehrotra A, Murphy K, Trick M (2000) Optimal shift scheduling: a branch-and-price approach. Nav Res Log 47:185–200

    Article  Google Scholar 

  • Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Manag Sci 44:714–729

    Article  Google Scholar 

  • Montoya C, Bellenguez-Morineau O, Rivreau D (2013) Branch and price approach for the multi-skill project scheduling problem. Optim Lett. Doi:10.1007/s11590-013-0692-8

    Google Scholar 

  • Polyak B (1967) A general method of solving extremum problems. Sov Math Doklady 8:593–597

    Google Scholar 

  • Van den Akker J, Hurkens C, Savelsbergh M (2000) Time-indexed formulations for machine scheduling problems: column generation. INFORMS J Comput 12:111–124

    Article  Google Scholar 

  • Van den Akker J, Hoogeveen J, de Velde S (2002) Combining column generation and Lagrangian relaxation to solve a single-machine common due date problem. INFORMS J Comput 14: 37–51

    Article  Google Scholar 

  • Van den Akker J, Diepen G, Hoogeveen J (2007) A column generation based destructive lower bound for resource constrained project scheduling problems. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2007). Lecture notes in computer science, vol 4510. Springer, Berlin, pp 376–390

    Google Scholar 

  • Wolsey L (1998) Integer programming. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Montoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Montoya, C., Bellenguez-Morineau, O., Pinson, E., Rivreau, D. (2015). Integrated Column Generation and Lagrangian Relaxation Approach for the Multi-Skill Project Scheduling Problem. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol.1. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05443-8_26

Download citation

Publish with us

Policies and ethics