Skip to main content

Introduction to Streaming Complex Plasmas A: Attraction of Like-Charged Particles

  • Chapter
  • First Online:
Complex Plasmas

Abstract

Like-charged particles usually interact via a repulsive force. However, in streaming dusty plasmas one can observe that two negatively charged dust particles may attract each other. This is explained by accumulation of positive ions below the dust particles (with respect to the streaming direction). In this chapter, we describe the dependence of this ion focus and the resulting wakes on discharge rf-power, pressure and thermophoretic force, as the three key parameters, that can be varied in dusty plasma experiments. Moreover, we discuss the impact of this attractive force on the collective properties of many dust particles, in particular, on the structure and on the dynamics of spherically confined clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While the light plasma particles have a universal charge (electrons \(q_\text {e}\), ions \(q_\text {i}\)), the grain charge \(Q_\text {d}\) is subject to dynamical plasma processes and may fluctuate (this will not be taken into account in this chapter). Therefore, in order to denote this difference, we use small and capital letters, respectively.

References

  1. G.E. Morfill, A.V. Ivlev, Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353 (2009)

    ADS  Google Scholar 

  2. M. Bonitz, C. Henning, D. Block, Complex plasmas: a laboratory for strong correlations. Rep. Prog. Phys. 73, 066501 (2010)

    ADS  Google Scholar 

  3. M. Bonitz, N. Horing, P. Ludwig (eds.), in Introduction to Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics (Springer, Heidelberg, 2010)

    Google Scholar 

  4. A. Ivlev, H. Löwen, G. Morfill, C.P. Royall, in Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids. Series in Soft Condensed Matter, vol 5 (World Scientific Pub Co, Singapore, 2012)

    Google Scholar 

  5. S. Ichimaru, Strongly coupled plasmas: high density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 1017 (1982)

    ADS  Google Scholar 

  6. H. Ikezi, Coulomb solid of small particles in plasmas. Phys. Fluids 29, 1764 (1986)

    ADS  Google Scholar 

  7. S. Hamaguchi, R. Farouki, D.H.E. Dubin, Triple point of Yukawa systems. Phys. Rev. E 56, 4671 (1997)

    ADS  Google Scholar 

  8. J. Schiffer, Melting of crystalline confined plasmas. Phys. Rev. Lett. 88, 205003 (2002)

    ADS  Google Scholar 

  9. O. Arp, D. Block, A. Piel, A. Melzer, Dust Coulomb balls: three-dimensional plasma crystals. Phys. Rev. Lett. 93, 165004 (2004)

    ADS  Google Scholar 

  10. A. Schella, T. Miksch, A. Melzer, J. Schablinski, D. Block, A. Piel, H. Thomsen, P. Ludwig, M. Bonitz, Melting scenarios for 3D dusty plasma clusters. Phys. Rev. E 84, 056402 (2011)

    ADS  Google Scholar 

  11. A. Filinov, M. Bonitz, Y. Lozovik, Wigner crystallization in mesoscopic 2D electron systems. Phys. Rev. Lett. 86, 3851 (2001)

    ADS  Google Scholar 

  12. J. Böning, A. Filinov, P. Ludwig, H. Baumgartner, M. Bonitz, Y.E. Lozovik, Melting of trapped few-particle systems. Phys. Rev. Lett. 100, 113401 (2008)

    ADS  Google Scholar 

  13. M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, A. Filinov, Structural properties of screened Coulomb balls. Phys. Rev. Lett. 96, 075001 (2006)

    ADS  Google Scholar 

  14. O. Arp, D. Block, M. Klindworth, A. Piel, Confinement of Coulomb balls. Phys. Plasmas 12, 122102 (2005)

    ADS  Google Scholar 

  15. H. Baumgartner, H. Kählert, V. Golobnychiy, C. Henning, S. Käding, A. Melzer, M. Bonitz, Shell structure of Yukawa balls. Contrib. Plasma Phys. 47, 281 (2007)

    ADS  Google Scholar 

  16. S. Käding, D. Block, A. Melzer, A. Piel, H. Kählert, P. Ludwig, M. Bonitz, Shell transitions between metastable states of Yukawa balls. Phys. Plasmas 15, 073710 (2008)

    ADS  Google Scholar 

  17. V.M. Bedanov, F.M. Peeters, Ordering and phase transitions of charged particles in a classical finite two-dimensional system. Phys. Rev. B 49, 2667 (1994)

    ADS  Google Scholar 

  18. A. Melzer, M. Klindworth, A. Piel, Normal modes of 2D finite Coulomb clusters in complex plasmas. Phys. Rev. Lett. 87, 115002 (2001)

    ADS  Google Scholar 

  19. M. Kroll, J. Schablinski, D. Block, A. Piel, On the influence of wakefields on three-dimensional particle arrangements. Phys. Plasmas 17, 013702 (2010)

    ADS  Google Scholar 

  20. C. Killer, A. Schella, T. Miksch, A. Melzer, Vertically elongated 3D Yukawa clusters in dusty plasmas. Phys. Rev. B 84, 054104 (2011)

    ADS  Google Scholar 

  21. A. Schella, M. Mulsow, A. Melzer, J. Schablinski, D. Block, From transport to disorder: thermodynamic properties of finite dust clouds. Phys. Rev. E 87, 063102 (2013)

    ADS  Google Scholar 

  22. H. Totsuji, T. Kishimoto, C. Totsuji, K. Tsuruta, Competition between two forms of ordering in finite Coulomb clusters. Phys. Rev. Lett. 88, 125002 (2002)

    ADS  Google Scholar 

  23. P. Ludwig, S. Kosse, M. Bonitz, Structure of spherical three-dimensional Coulomb crystals. Phys. Rev. E 71, 046403 (2005)

    ADS  Google Scholar 

  24. D. Block, M. Kroll, O. Arp, A. Piel, S. Käding, Y. Ivanov, A. Melzer, C. Henning, H. Baumgartner, P. Ludwig, M. Bonitz, Structural and dynamical properties of Yukawa balls. Plasma Phys. Controlled Fusion 49, B109 (2007)

    ADS  Google Scholar 

  25. D. Block, S. Käding, A. Melzer, A. Piel, H. Baumgartner, M. Bonitz, Experiments on metastable states of three-dimensional trapped particle clusters. Phys. Plasmas 15, 040701 (2008)

    ADS  Google Scholar 

  26. H. Baumgartner, V. Golobnychiy, D. Asmus, P. Ludwig, M. Bonitz, Ground states of finite spherical Yukawa crystals. New J. Phys. 10, 093019 (2008)

    ADS  Google Scholar 

  27. P. Ludwig, H. Thomsen, K. Balzer, A. Filinov, M. Bonitz, Tuning correlations in multi-component plasmas. Plasma Phys. Controlled Fusion 52, 124013 (2010)

    ADS  Google Scholar 

  28. T. Antonova, B.M. Annaratone, D.D. Goldbeck, V. Yaroshenko, H.M. Thomas, G.E. Morfill, Measurement of the interaction force among particles in 3D plasma clusters. Phys. Rev. Lett. 96, 115001 (2006)

    ADS  Google Scholar 

  29. T. Antonova, B.M. Annaratone, H.M. Thomas, G.E. Morfill, Energy relaxation and vibrations in small 3D plasma clusters. New J. Phys. 10, 043028 (2008)

    ADS  Google Scholar 

  30. S.W.S. Apolinario, F. Peeters, Melting transitions in isotropically confined three-dimensional small Coulomb clusters. Phys. Rev. E 76, 031107 (2007)

    ADS  Google Scholar 

  31. A. Melzer, B. Buttenschön, T. Miksch, M. Passvogel, D. Block, O. Arp, A. Piel, Finite dust clusters in dusty plasmas. Plasma Phys. Controlled Fusion 52, 124028 (2010)

    ADS  Google Scholar 

  32. C. Henning, H. Kählert, P. Ludwig, A. Melzer, M. Bonitz, Spectral properties of spherically confined dusty plasma crystals. J. Phys. A 42, 214023 (2009)

    ADS  Google Scholar 

  33. H. Kählert, P. Ludwig, H. Baumgartner, M. Bonitz, D. Block, S. Käding, A. Melzer, A. Piel, Probability of metastable configurations in spherical three-dimensional Yukawa crystals. Phys. Rev. E 78, 036408 (2008)

    ADS  Google Scholar 

  34. Y. Ivanov, A. Melzer, Modes of three-dimensional dust crystals in dusty plasmas. Phys. Rev. E 79, 036402 (2009)

    ADS  Google Scholar 

  35. H. Kählert, M. Bonitz, How spherical plasma crystals form. Phys. Rev. Lett. 104, 015001 (2010)

    ADS  Google Scholar 

  36. C. Henning, K. Fujioka, P. Ludwig, A. Piel, A. Melzer, M. Bonitz, Existence and vanishing of the breathing mode in strongly correlated finite systems. Phys. Rev. Lett. 101, 045002 (2008)

    ADS  Google Scholar 

  37. A. Melzer, Zigzag transition of finite dust clusters. Phys. Rev. E 73, 056404 (2006)

    ADS  Google Scholar 

  38. S.W.S. Apolinario, F. Peeters, Melting of anisotropically confined Coulomb balls. Phys. Rev. B 78, 024202 (2008)

    ADS  Google Scholar 

  39. J. Kong, T.W. Hyde, L. Matthews, K. Qiao, Z. Zhang, A. Douglass, One-dimensional vertical dust strings in a glass box. Phys. Rev. E 84, 016411 (2011)

    ADS  Google Scholar 

  40. A. Radzvilavičius, O. Rancova, E. Anisimovas, Dimensional transitions in small Yukawa clusters. Phys. Rev. E 86, 016404 (2012)

    ADS  Google Scholar 

  41. A. Melzer, V.A. Schweigert, I.V. Schweigert, A. Homann, S. Peters, A. Piel, Structure and stability of the plasma crystal. Phys. Rev. E 54, 46 (1996)

    ADS  Google Scholar 

  42. K. Takahashi, T. Oishi, K. Shimomai, Y. Hayashi, S. Nishino, Analyses of attractive forces between particles in Coulomb crystal of dusty plasmas by optical manipulations. Phys. Rev. E 58, 7805 (1998)

    ADS  Google Scholar 

  43. J. Hammerberg, D. Lemons, M. Murillo, D. Winske, Molecular dynamics simulations of plasma crystal formation including wake effects. IEEE Trans. Plasma Sci. 29(2), 247 (2001)

    ADS  Google Scholar 

  44. S.V. Vladimirov, M. Nambu, Attraction of charged particulates in plasmas with finite flows. Phys. Rev. E 52, R2172 (1995)

    ADS  Google Scholar 

  45. F. Melandsø, J. Goree, Polarized supersonic plasma flow simulation for charged bodies such as dust particles and spacecraft. Phys. Rev. E 52, 5312 (1995)

    ADS  Google Scholar 

  46. V.A. Schweigert, I.V. Schweigert, A. Melzer, A. Homann, A. Piel, Alignment and instability of ’dust’ crystals in plasmas. Phys. Rev. E 54, 4155 (1996)

    ADS  Google Scholar 

  47. O. Ishihara, S.V. Vladimirov, Wake potential of a dust grain in a plasma with ion flow. Phys. Plasmas 4(1), 69 (1997)

    ADS  Google Scholar 

  48. D. Winske, W. Daughton, D.S. Lemons, M.S. Murillo, Ion kinetic effects on the wake potential behind a dust grain in a flowing plasma. Phys. Plasmas 7(6), 2320 (2000)

    ADS  Google Scholar 

  49. A. Melzer, V. Schweigert, A. Piel, Transition from attractive to repulsive forces in dust molecules in a plasma sheath. Phys. Rev. Lett. 83, 3194 (1999)

    ADS  Google Scholar 

  50. G.A. Hebner, M.E. Riley, Measurement of attractive interactions produced by the ion wakefield in dusty plasmas using a constrained collision geometry. Phys. Rev. E 68, 046401 (2003)

    ADS  Google Scholar 

  51. A.A. Samarian, S.V. Vladimirov, Dust particle alignments in a plasma sheath. Contrib. Plasma Phys. 49(4–5), 260 (2009)

    ADS  Google Scholar 

  52. A. Melzer, Laser-experiments on particle interactions in strongly coupled dusty plasma crystals. Phys. Scr. T89, 33 (2001)

    ADS  Google Scholar 

  53. M. Kroll, J. Schablinski, D. Block, A. Piel, On the influence of wakefields on three-dimensional particle arrangements. Phys. Plasmas 17(1), 013702 (2010)

    ADS  Google Scholar 

  54. J.H. Chu, I. Lin, Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009 (1994)

    ADS  Google Scholar 

  55. Y. Hayashi, K. Tachibana, Observation of Coulomb crystal formation from carbon particles grown in a methane plasma. Jpn. J. Appl. Phys. 33, L804 (1994)

    ADS  Google Scholar 

  56. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Plasma crystal—Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652 (1994)

    ADS  Google Scholar 

  57. T. Trottenberg, A. Melzer, A. Piel, Measurement of the electric charge on particulates forming Coulomb crystals in the sheath of an rf plasma. Plasma Sources Sci. Technol. 4, 450 (1995)

    ADS  Google Scholar 

  58. A. Melzer, A. Homann, A. Piel, Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53, 2757 (1996)

    ADS  Google Scholar 

  59. M. Nambu, S.V. Vladimirov, P.K. Shukla, Attractive forces between charged particulates in plasmas. Phys. Lett. A 203, 40 (1995)

    ADS  Google Scholar 

  60. F. Melandsø, Heating and phase transitions of dust plasma crystals in a flowing plasma. Phys. Rev. E 55, 7495 (1997)

    ADS  Google Scholar 

  61. M. Lampe, G. Joyce, G. Ganguli, Interactions between dust grains in a dusty plasma. Phys. Plasmas 7, 3851 (2000)

    ADS  Google Scholar 

  62. M. Lampe, G. Joyce, G. Ganguli, Structure and dynamics of dust in streaming plasma: dust molecules, strings, and crystals. IEEE Trans. Plasma Sci. 33, 57 (2005)

    ADS  Google Scholar 

  63. P. Ludwig, W.J. Miloch, H. Kählert, M. Bonitz, On the wake structure in streaming complex plasmas. New J. Phys. 14(5), 053016 (2012)

    ADS  Google Scholar 

  64. A. Piel, Alignment of dust particles by ion drag forces in subsonic flows. Phys. Plasmas 18, 073704 (2011)

    ADS  Google Scholar 

  65. W.J. Miloch, M. Kroll, D. Block, Charging and dynamics of a dust grain in the wake of another grain in flowing plasmas. Phys. Plasmas 17, 103703 (2010)

    ADS  Google Scholar 

  66. V.R. Ikkurthi, K. Matyash, A. Melzer, R. Schneider, Computation of charge and ion drag force on multiple static spherical dust grains immersed in rf discharges. Phys. Plasmas 17, 103712 (2010)

    ADS  Google Scholar 

  67. I.H. Hutchinson, Forces on a small grain in the nonlinear plasmawake of another. Phys. Rev. Lett. 107, 095001 (2011)

    ADS  Google Scholar 

  68. I.H. Hutchinson, C.B. Haakonsen, Collisional effects on nonlinear ion drag force for small grains. Phys. Plasmas 20, 083701 (2013)

    ADS  Google Scholar 

  69. H. Thomas, G.E. Morfill, Melting dynamics of a plasma crystal. Nature 379, 806 (1996)

    ADS  Google Scholar 

  70. V.A. Schweigert, I.V. Schweigert, A. Melzer, A. Homann, A. Piel, Plasma crystal melting: a nonequilibrium phase transition. Phys. Rev. Lett. 80, 5345 (1998)

    ADS  Google Scholar 

  71. Y. Ivanov, A. Melzer, Melting dynamics of finite clusters in dusty plasmas. Phys. Plasmas 12, 072110 (2005)

    ADS  Google Scholar 

  72. S.K. Zhdanov, A.V. Ivlev, G.E. Morfill, Mode-coupling instability of two-dimensional plasma crystals. Phys. Plasmas 16, 083706 (2009)

    ADS  Google Scholar 

  73. L. Couëdel, V. Nosenko, A.V. Ivlev, S.K. Zhdanov, H.M. Thomas, G.E. Morfill, Direct observation of mode-coupling instability in two-dimensional plasma crystals. Phys. Rev. Lett. 104, 195001 (2010)

    ADS  Google Scholar 

  74. T.B. Röcker, A.V. Ivlev, R. Kompaneets, G.E. Morfill, Mode coupling in two-dimensional plasma crystals: role of the wake model. Phys. Plasmas 19, 033708 (2012)

    ADS  Google Scholar 

  75. A. Piel, Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas (Springer, Heidelberg, 2010)

    Google Scholar 

  76. P. Ludwig, H. Kählert, M. Bonitz, Ion-streaming induced order transition in three-dimensional dust clusters. Plasma Phys. Controlled Fusion 54, 045011 (2012)

    ADS  Google Scholar 

  77. L. Wörner, C. Räth, V. Nosenko, S.K. Zhdanov, H.M. Thomas, G.E. Morfill, J. Schablinski, D. Block, String structures in driven 3D complex-plasma clusters. Europhys. Lett. 100(3), 35001 (2012)

    ADS  Google Scholar 

  78. O. Arp, J. Goree, A. Piel, Particle chains in a dilute dusty plasma with subsonic ion flow. Phys. Rev. E 85, 046409 (2012)

    ADS  Google Scholar 

  79. V. Steinberg, R. Sütterlin, A.V. Ivlev, G. Morfill, Vertical pairing of identical particles suspended in the plasma sheath. Phys. Rev. Lett. 86, 4540 (2001)

    ADS  Google Scholar 

  80. A.A. Samarian, S.V. Vladimirov, B. James, Wake-induced symmetry-breaking of dust particle arrangements in a complex plasma. JETP Lett. 82, 858 (2005)

    Google Scholar 

  81. J. Carstensen, F. Greiner, D. Block, J. Schablinski, W.J. Miloch, A. Piel, Charging and coupling of a vertically aligned particle pair in the plasma sheath. Phys. Plasmas 19, 033702 (2012)

    ADS  Google Scholar 

  82. J. Carstensen, F. Greiner, A. Piel, Ion-wake-mediated particle interaction in a magnetized-plasma flow. Phys. Rev. Lett. 109, 135001 (2012)

    ADS  Google Scholar 

  83. G.E. Morfill, A.V. Ivlev, H.M. Thomas, Complex (dusty) plasmas kinetic studies of strong coupling phenomena. Phys. Plasmas 19, 055402 (2012)

    ADS  Google Scholar 

  84. S. Käding, A. Melzer, Three-dimensional stereoscopy of Yukawa (Coulomb) balls in dusty plasmas. Phys. Plasmas 13, 090701 (2006)

    Google Scholar 

  85. T.M. Flanagan, J. Goree, Observation of the spatial growth of self-excited dust-density waves. Phys. Plasmas 17, 123702 (2010)

    ADS  Google Scholar 

  86. L. Wörner, V. Nosenko, A.V. Ivlev, S.K. Zhdanov, H.M. Thomas, G.E. Morfill, M. Kroll, J. Schablinski, D. Block, Effect of rotating electric field on 3D complex (dusty) plasma. Phys. Plasmas 18, 063706 (2011)

    ADS  Google Scholar 

  87. W.D.S. Ruhunusiri, J. Goree, Synchronization mechanism and Arnold tongues for dust density waves. Phys. Rev. E 85, 046401 (2012)

    ADS  Google Scholar 

  88. Y. Ivanov, A. Melzer, Particle positioning techniques for dusty plasma experiments. Rev. Sci. Instrum. 78, 033506 (2007)

    ADS  Google Scholar 

  89. J. Pieper, J. Goree, R. Quinn, Three-dimensional structure in a crystallized dusty plasma. Phys. Rev. E 54, 5636 (1996)

    ADS  Google Scholar 

  90. M. Zuzic, A.V. Ivlev, J. Goree, G.E. Morfill, H.M. Thomas, H. Rothermel, U. Konopka, R. Sütterlin, D.D. Goldbeck, Three-dimensional strongly coupled plasma crystal under gravity conditions. Phys. Rev. Lett. 85, 4064 (2000)

    ADS  Google Scholar 

  91. J.E. Thomas, J.D. Willimas, J. Silver, Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma. Phys. Plasmas 11, L37 (2004)

    ADS  Google Scholar 

  92. M. Kroll, D. Block, A. Piel, Digital in-line holography of dusty plasmas. Phys. Plasmas 15, 063703 (2008)

    ADS  Google Scholar 

  93. B.M. Annaratone, T. Antonova, D.D. Goldbeck, H.M. Thomas, G.E. Morfill, Complex-plasma manipulation by radiofrequency biasing. Plasma Phys. Controlled Fusion 46, B495 (2004)

    Google Scholar 

  94. P. Hartmann, I. Donkó, Z. Donkó, Single exposure three-dimensional imaging of dusty plasma clusters. Rev. Sci. Instrum. 84, 023501 (2013)

    ADS  Google Scholar 

  95. M. Wolter, A. Melzer, Laser heating of particles in dusty plasmas. Phys. Rev. E 71, 036414 (2005)

    ADS  Google Scholar 

  96. V. Nosenko, J. Goree, A. Piel, Laser method of heating monolayer dusty plasmas. Phys. Plasmas 13, 032106 (2006)

    ADS  Google Scholar 

  97. Y. Feng, J. Goree, B. Liu, Evolution of shear-induced melting in a dusty plasma. Phys. Rev. Lett. 104, 165003 (2010)

    ADS  Google Scholar 

  98. P. Hartmann, M.C. Sándor, A. Kovács, Z. Donkó, Static and dynamic shear viscosity of a single-layer complex plasma. Phys. Rev. E 84, 016404 (2011)

    ADS  Google Scholar 

  99. J. Schablinski, D. Block, A. Piel, A. Melzer, H. Thomsen, H. Kählert, M. Bonitz, Laser heating of finite two-dimensional dust clusters: A. Experiments. Phys. Plasmas 19, 013705 (2012)

    ADS  Google Scholar 

  100. H. Thomsen, H. Kählert, M. Bonitz, J. Schablinski, D. Block, A. Piel, A. Melzer, Laser heating of finite two-dimensional dust clusters: B. Simulations. Phys. Plasmas 19, 023701 (2012)

    ADS  Google Scholar 

  101. V. Nosenko, A.V. Ivlev, G.E. Morfill, Anisotropic shear melting and recrystallization of a two-dimensional complex plasma. Phys. Rev. E 87, 043115 (2013)

    ADS  Google Scholar 

  102. V. Nosenko, S.K. Zhdanov, A.V. Ivlev, C.A. Knapek, G.E. Morfill, 2D melting of plasma crystals: equilibrium and nonequilibrium regimes. Phys. Rev. Lett. 103, 015001 (2009)

    ADS  Google Scholar 

  103. A. Piel, A. Homann, A. Melzer, Laser-excited waves in a plasma crystal. Plasma Phys. Controlled Fusion 41, A453 (1999)

    ADS  Google Scholar 

  104. A. Melzer, S. Nunomura, D. Samsonov, J. Goree, Laser-excited Mach cones in a dusty plasma crystal. Phys. Rev. E 62, 4162 (2000)

    ADS  Google Scholar 

  105. V. Nosenko, J. Goree, Z.W. Ma, A. Piel, Observation of shear-wave Mach cones in a 2D dusty-plasma crystal. Phys. Rev. Lett. 88, 135001 (2002)

    ADS  Google Scholar 

  106. B. Liu, J. Goree, V. Nosenko, L. Boufendi, Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasmas 10, 9 (2003)

    ADS  Google Scholar 

  107. W.J. Miloch, D. Block, Dust grain charging in a wake of other grains. Phys. Plasmas 19, 123703 (2012)

    ADS  Google Scholar 

  108. U. Konopka, G. Morfill, L. Ratke, Measurement of the interaction potential of microspheres in the sheath of a rf discharge. Phys. Rev. Lett. 84, 891 (2000)

    ADS  Google Scholar 

  109. A.K. Mukhopadhyay, J. Goree, Two-particle distribution and correlation function for a 1D dusty plasma experiment. Phys. Rev. Lett. 109, 165003 (2012)

    ADS  Google Scholar 

  110. G.A. Hebner, M.E. Riley, Structure of the ion wakefield in dusty plasmas. Phys. Rev. E 69, 026405 (2004)

    ADS  Google Scholar 

  111. I.H. Hutchinson, Intergrain forces in low-Mach-number plasma wakes. Phys. Rev. E 85, 066409 (2012)

    ADS  Google Scholar 

  112. J. Beckers, T. Ockenga, M. Wolter, W.W. Stoffels, J. van Dijk, H. Kersten, G.M.W. Kroesen, Microparticles in a collisional Rf plasma sheath under hypergravity conditions as probes for the electric field strength and the particle charge. Phys. Rev. Lett. 106, 115002 (2011)

    ADS  Google Scholar 

  113. G. Schubert, R. Basner, H. Kersten, H. Fehske, Determination of sheath parameters by test particles upon local electrode bias and plasma switching. Eur. Phys. J. D 63, 431–440 (2011)

    Google Scholar 

  114. V.A. Schweigert, F. Peeters, Spectral properties of classical two-dimensional clusters. Phys. Rev. B 51, 7700 (1995)

    ADS  Google Scholar 

  115. A. Melzer, Mode spectra of thermally excited two-dimensional dust Coulomb clusters. Phys. Rev. E 67, 016411 (2003)

    ADS  Google Scholar 

  116. A. Schella, M. Mulsow, A. Melzer, H. Kählert, D. Block, P. Ludwig, M. Bonitz, Crystal and fluid modes in three-dimensional finite dust clouds, New J. Phys. 15, 113021 (2013)

    Google Scholar 

Download references

Acknowledgments

We would like to thank M. Mulsow for help with the data processing. We acknowledge financial support of the Deutsche Forschungsgemeinschaft via SFB-TR24, projects A3, A7 and A9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schella, A., Melzer, A., Ludwig, P., Thomsen, H., Bonitz, M. (2014). Introduction to Streaming Complex Plasmas A: Attraction of Like-Charged Particles. In: Bonitz, M., Lopez, J., Becker, K., Thomsen, H. (eds) Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-05437-7_2

Download citation

Publish with us

Policies and ethics