Skip to main content

Using the Entropy of the DFT of the Laplacian Eigenvalues to Assess Networks

  • Conference paper
Book cover Complex Networks V

Abstract

There are several metrics that are very useful to analyze and to design networks. These metrics, including the spectral-based ones, can be used to retrieve topological properties from the network. We observed that if one applies the Discrete Fourier Transform (DFT) over the eigenvalues of the Laplacian matrix, it is possible to observe different patterns in the DFT depending on some properties of the analyzed networks. In this paper, we propose a new metrics based on the entropy of the DFT samples, that can be used to identify the type of network. We evaluated this metrics in networks generated by four different procedures (k-Regular, Erdos-Renyi, Watts-Strogatz and Barabasi-Albert) and in well-known datasets of real networks. The results indicate that one can use the proposed metrics to identify the generational model of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, T.G.: Network Science - Theory and Applications. John Wiley & Sons (2009)

    Google Scholar 

  2. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  3. Sha, Z., Panchal, J.: Towards the design of complex evolving networks with high robustness and resilience. Procedia Computer Science 16, 522–531 (2013)

    Article  Google Scholar 

  4. van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press (2011)

    Google Scholar 

  5. Cvetkovic, D.M., Gutman, I.: Selected topics on applications of graph spectra. Matematicki institut SANU, Beograd (2011)

    MATH  Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  7. van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum? Linear Algebra and its Applications 373, 241–272 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farkas, I.J., Derényi, I., Barabási, A.L., Vicsek, T.: Spectra of “real-world” graphs: Beyond the semicircle law. Phys. Rev. E 64, 026704 (2001)

    Google Scholar 

  9. Araújo, D.R.B., Bastos-Filho, C.A., Martins-Filho, J.F.: Towards Using DFT to Characterize Complex Networks. In: Proceedings of the XXXI Brazilian Symposium on Telecommunications, SBrT 2013, pp. 1–5 (2013)

    Google Scholar 

  10. Read, K.E.: Cultures of the central highlands. Southwestern J. of Anthropology 10(1), 1–43 (1954)

    Google Scholar 

  11. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

  12. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. of Theoretical Biology 271(1), 166–180 (2011)

    Article  Google Scholar 

  13. Michalski, R., Palus, S., Kazienko, P.: Matching organizational structure and social network extracted from email communication. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 197–206. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  15. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68, 065103 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

de Araújo, D.R.B., Bastos-Filho, C.J.A., Martins-Filho, J.F. (2014). Using the Entropy of the DFT of the Laplacian Eigenvalues to Assess Networks. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds) Complex Networks V. Studies in Computational Intelligence, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-05401-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05401-8_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05400-1

  • Online ISBN: 978-3-319-05401-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics