Skip to main content

Discovering Colored Network Motifs

  • Conference paper

Part of the book series: Studies in Computational Intelligence ((SCI,volume 549))

Abstract

Network motifs are small over represented patterns that have been used successfully to characterize complex networks. Current algorithmic approaches focus essentially on pure topology and disregard node and edge nature. However, it is often the case that nodes and edges can also be classified and separated into different classes. This kind of networks can be modeled by colored (or labeled) graphs. Here we present a definition of colored motifs and an algorithm for efficiently discovering them.We use g-tries, a specialized data-structure created for finding sets of subgraphs. G-Tries encapsulate common sub-structure, and with the aid of symmetry breaking conditions and a customized canonization methodology, we are able to efficiently search for several colored patterns at the same time. We apply our algorithm to a set of representative complex networks, showing that it can find colored motifs and outperform previous methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  2. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)

    Article  Google Scholar 

  3. Wu, G., Harrigan, M., Cunningham, P.: Characterizing wikipedia pages using edit network motif profiles. In: 3rd Int. Workshop on Search and Mining User-Generated Contents (SMUC), pp. 45–52. ACM, New York (2011)

    Chapter  Google Scholar 

  4. Schbath, S., Lacroix, V., Sagot, M.: Assessing the exceptionality of coloured motifs in networks. EURASIP Journal on Bioinformatics and Systems Biology (2008)

    Google Scholar 

  5. Adami, C., Qian, J., Rupp, M., Hintze, A.: Information content of colored motifs in complex networks. Artificial Life 17(4), 375–390 (2011)

    Article  Google Scholar 

  6. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. of the National Academy of Sciences of the United States of America 101(16), 5934–5939 (2004)

    Article  Google Scholar 

  7. Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In: 25th ACM Symposium on Applied Computing (SAC), pp. 1559–1566. ACM (March 2010)

    Google Scholar 

  8. Ribeiro, P., Silva, F.: G-tries: a data structure for storing and finding subgraphs. Data Mining and Knowledge Discovery (2013)

    Google Scholar 

  9. Bruno, F., Palopoli, L., Rombo, S.E.: New trends in graph mining: Structural and node-colored network motifs. IJKDB 1(1), 81–99 (2010)

    Google Scholar 

  10. Qian, J., Hintze, A., Adami, C.: Colored Motifs Reveal Computational Building Blocks in the C. elegans Brain. PLoS ONE 6(3), e17013+ (2011)

    Google Scholar 

  11. Schbath, S., Lacroix, V., Sagot, M.F.: Assessing the exceptionality of coloured motifs in networks. EURASIP J. Bioinformatics and Systems Biology 2009 (2009)

    Google Scholar 

  12. Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)

    Article  Google Scholar 

  13. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 347–359 (2006)

    Article  Google Scholar 

  14. Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S., Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for finding network motifs. BMC Bioinformatics 10(1), 318 (2009)

    Article  Google Scholar 

  15. Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In: International Conference on Advances in Social Networks Analysis and Mining, pp. 264–271. IEEE (2013)

    Google Scholar 

  16. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 92–106. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Ribeiro, P., Silva, F.: Efficient subgraph frequency estimation with G-tries. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 238–249. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  19. McKay, B.D., Piperno, A.: Practical graph isomorphism, {II}. Journal of Symbolic Computation 60, 94–112 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kao, M.Y. (ed.): Encyclopedia of Algorithms. Springer (2008)

    Google Scholar 

  21. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election: divided they blog. In: 3rd International Workshop on Link Discovery (LinkKDD), pp. 36–43. ACM, New York (2005)

    Chapter  Google Scholar 

  22. Kang, U., Papadimitriou, S., Sun, J., Tong, H.: Centralities in large networks: Algorithms and observations. In: SIAM International Conference on Data Mining, pp. 119–130 (2011)

    Google Scholar 

  23. Opsahl, T.: Why anchorage is not (that) important: Binary ties and sample selection (August 2011), http://toreopsahl.com/2011/08/12/

  24. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ribeiro, P., Silva, F. (2014). Discovering Colored Network Motifs. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds) Complex Networks V. Studies in Computational Intelligence, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-05401-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05401-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05400-1

  • Online ISBN: 978-3-319-05401-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics