Skip to main content

Series Phase and Sequence Impedance Matrices of Crossbonded Cable Systems

  • Chapter
  • First Online:
Online Location of Faults on AC Cables in Underground Transmission Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this section, the series impedance matrix of a crossbonded cable system is discussed with special attention to the issues of interest for fault location. The phase series impedance matrix describing one minor section is comprised of the cable conductors’ self and mutual impedances with earth return.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Schelkunoff, The electromagnetic theory of coaxial transmission lines and cylindricalshields. Bell Syst. Tech. J. 13, 532–579 (1934)

    Google Scholar 

  2. F. Pollaczek, Uber das feld einer unendlich langen wechsel stromdurchflossenen einfachtleitung. Elektrische Nachrichten Technik 3(9), 339–359 (1926)

    Google Scholar 

  3. L.M. Wedepohl, D.J. Wilcox, Transient analysis of underground power-transmission systems. System-model and wave-propagation characteristics. Proc. Inst. Electr. Eng. 120(2), 253–260 (1973)

    Google Scholar 

  4. O. Saad, G. Gaba, M. Giroux, A closed-form approximation for ground return impedance of underground cables. IEEE Trans. Power Deliv. 11(3), 1536–1545 (1996)

    Article  Google Scholar 

  5. A. Ametani, A general formulation of impedance and admittance of cables. IEEE Trans. Power Apparatus Syst. PAS-99(3), 902–910 (1980)

    Google Scholar 

  6. IEC Standard 60 287-1-3, Current Sharing Between Parallel Single-Core Cables and Calculation of Circulating Current Losses, 1st edn (Geneva, Switzerland, IEC, 2002–2005)

    Google Scholar 

  7. C.L. Fortescue, Method of symmetrical co-ordinates applied to the solution of polyphase networks. AIEE Trans. 37(Part II), 1027–1140 (1918)

    Google Scholar 

  8. T. Ohno, PhD-thesis, Dynamic Study on the 400 kV 60 km Kyndbyvarrket Asnarsvarrket Line, 1st edn. (Fredericia, Denmark, Energinet.dk, 2013)

    Google Scholar 

  9. U.S. Gudmundsdottir, PhD-thesis, Modeling of Long High Voltage AC cables in Transmission Systems, 2nd edn. (Fredericia, Denmark, Energinet.dk, 2010) ISBN 978-87-90707-73-6

    Google Scholar 

  10. B. Gustavsen, Panel session on data for modeling system transients insulated cables. in Power Engineering Society Winter Meeting, 2001. IEEE, vol. 2 (2001), pp. 718–723

    Google Scholar 

  11. B. Gustavsen, J.A. Martinez, D. Durbak, Parameter determination for modeling system transients-part ii: insulated cables. IEEE Trans. Power Deliv. 20(3), 2045–2050 (2005)

    Google Scholar 

  12. C.F. Jensen, F. Faria da Silva, C.L. Bak, W. Wiechowski. Switching studies for the horns rev 2 wind farm main cable. in International Conference on Power Systems Transients (IPST), (2011)

    Google Scholar 

  13. N. Tleis, Power Systems Modelling and Fault Analysis—Theory and practice (Elsevier, 2008) ISBN 13-978-0-7506-8074-5

    Google Scholar 

  14. Cigré Working Group B1.30, Cable Systems Electrical Characteristics (Paris, France, Cigre, 2013)

    Google Scholar 

  15. V. Leitloff, X. Bourgeat, G. Duboc. Setting constraints for distance protection on underground lines. in Developments in Power System Protection, 2001, Seventh International Conference on (IEE) (2001), pp. 467–470

    Google Scholar 

  16. D.A. Tziouvaras, Protection of high-voltage ac cables. in Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006. PS ’06 (2006), pp. 316–328

    Google Scholar 

  17. M.M Saha, J. Izykowski, E.Rosolowski, Fault Location on Power Networks (Springer, 2010) ISBN 978-1-84882-886-5

    Google Scholar 

  18. Cigré Study Comittie 21, The Design of Specially Bonded Cable Systems (Paris, France, Electra N 28, Cigré, 2011)

    Google Scholar 

  19. B. Koch, Tests on xlpe-insulated cable arcing faults and arc-proofing. IEEE Trans. Power Deliv. 3(4), 1289–1295 (1988)

    Article  Google Scholar 

  20. M. Bashir, I. Niazy, J. Sadeh, M. Taghizadeh, Considering characteristics of arc on travelling wave fault location algorithm for the transmission lines without using line parameters. in Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on (2011), pp. 1–5

    Google Scholar 

  21. G. Ziegler, Numerical Distance Protection—Principles and Applications (Publicis Kommunikation Agentur GmbH, GWA, Erlangen, 2008)

    Google Scholar 

  22. Cigré, Earth Potential Rises in Specially Bonded Screen Systems (Paris, France, Task Force B1.26, 2008), pp. 1–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Flytkjær Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, C.F. (2014). Series Phase and Sequence Impedance Matrices of Crossbonded Cable Systems. In: Online Location of Faults on AC Cables in Underground Transmission Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05398-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05398-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05397-4

  • Online ISBN: 978-3-319-05398-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics