About the Cosserats’ Book of 1909

  • Gérard A. MauginEmail author
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 214)


The Cosserat brothers published in 1909 an original book where they favour a variational formulation of continuum mechanics together with an invariance which they call “Euclidean invariance” of the Lagrangian-Hamiltonian action. This strategy places on an equal footing translations and possible rotational degrees of freedom, yielding in a natural way what is now commonly called the theory of Cosserat or oriented—or polar—continua with asymmetric stresses and the new notion of couple stresses. Here their landmark work is replaced in its epoch making context underlining the influences they benefited from and the influence they have exerted on their direct contemporaries and much later on (in the second-half of the twentieth century). The sociological scientific environment of the early twentieth century and the typical publication strategy of the time are outlined, explaining thus the Cosserats’ own strategy. The further reception of their work from 1909 to the Second World War and the revival of interest in it in the nineteen-fifties are examined critically. Finally, the formalization of their work in a new landscape of continuum thermo-mechanics created essentially by Truesdell is evoked together with other influences and further developments.


Cosserat continua Euclidean invariance Couple stress Variational formulation Generalized continua 


  1. 1.
    Aero EL, Kuvshinskii EV (1961) Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Phys Solid State 2:1272–1281 (English translation from the Russian edition, 1960)Google Scholar
  2. 2.
    Altenbach H, Eremeyev VA (eds) (2013) Generalized continua—from the theory to engineering applications (CISM Lecture notes, Udine, 2011). Springer, WienGoogle Scholar
  3. 3.
    Appell P (1909) Traité de mécanique rationnelle, T.III, Gauthier-Villars, paris (Note sur la théorie de l’action euclidienne par E. and F. Cosserat, pp 557–629) (reprinted in fac-simile form by Editions Gabay, Paris, 1991)Google Scholar
  4. 4.
    Ball JM, James RD (2002) The scientific life and influence of Clifford Ambrose Truesdell III. Arch Rat Mech Anal 161:1–26CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barré de Saint-Venant AJC (1883) Théorie des corps élastiques, French translation from the German with many comments and additions of “Clebsch A (1862) Theorie der Elastizität fester Körper, Leipzig”Google Scholar
  6. 6.
    Brocato M, Chatzis K (2009) Historical essay: In: Reprint of the Cosserats’ 1909 book, Hermann Archives, ParisGoogle Scholar
  7. 7.
    Buhl A (1931) «Eugène Cosserat». Ann Fac Sci Toulouse, 3ème Série, 23, pp v–viiiGoogle Scholar
  8. 8.
    Cartan E (1922) Sur une généralisation de la notion de courbure de Riemann et les espaces à Torsion. C R Acad Sci Paris 174:593–595zbMATHGoogle Scholar
  9. 9.
    Casey J, Crochet MJ (1995) Paul M Naghdi (1924–1994). In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids: a collection of papers in honor of Paul M Naghdi. Birkhäuser, Boston, pp S1–S32CrossRefGoogle Scholar
  10. 10.
    Chwolson OD (1906) Traité de physique (traduit du Russe), Paris, Hermann (vol I, Note sur la dynamique du point et du corps invariable by E. and F. Cosserat, pp 236–273)Google Scholar
  11. 11.
    Chwolson OD (1909) Traité de physique (traduit du Russe), Paris, Hermann (vol II, Note sur la théorie des corps déformables by E. and F. Cosserat, pp 953–1173)Google Scholar
  12. 12.
    Cosserat E, Cosserat F (1896) Sur la théorie de l’élasticité. Ann Fac Sci Toulouse, 1ère série 10(3–5): I1–I116Google Scholar
  13. 13.
    Cosserat E, Cosserat F (1909) Théorie des corps déformables, Hermann, Paris, 226 pages). Reprint by Editions Gabay, Paris, 2008; Reprint by Hermann Archives, Paris, 2009, with a Preface by G. Capriz and an historical essay by M. Brocato and K. Chatzis. [English Translation: N68-15456: Clearinghouse Federal Scientific and Technical Information, Springfield, Virginia NASA, TT F-11561 (February 1968); another translation by D. Delphenich, 2007]Google Scholar
  14. 14.
    Cosserat E, Cosserat F (1915) Principes de la mécanique rationnelle (after the original article in German by A. Voss). In: Encyclopédie des sciences mathématiques pures et appliquées, vol IV. Gautier-Villars, Paris, pp 1–187Google Scholar
  15. 15.
    Crowe MJ (1967) A history of vector analysis. University of Notre Dame Press (Reprint, Dover, New York, 1985)Google Scholar
  16. 16.
    Darboux G (1887–1896) Leçons sur la théorie générale des surfaces, in 4 volumes. ParisGoogle Scholar
  17. 17.
    Darboux G (1898) Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Vol I. ParisGoogle Scholar
  18. 18.
    Duhem P (1891) Hydrodynamique, élasticité et acoustique. A. Hermann Editeur, ParisGoogle Scholar
  19. 19.
    Duhem P (1896) Le potentiel thermodynamique et la pression hydrostatique. Ann Ecole Norm Sup 10:187–230MathSciNetGoogle Scholar
  20. 20.
    Duhem P (1906–1913) Etudes sur Léonard de Vinci—ceux qu’il a lus et ceux qui l’ont lu, 3 volumes. Hermann, ParisGoogle Scholar
  21. 21.
    Eremeyev AV, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49:1993–2005CrossRefGoogle Scholar
  22. 22.
    Ericksen JL (1960) Anisotropic fluids. Arch Rat Mech Anal 4:231–237CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Ericksen JL, Rivlin RS (1954) Large deformations of homogeneous anisotropic materials. Arch Rat Mech Anal 3:281–301zbMATHMathSciNetGoogle Scholar
  24. 24.
    Ericksen JL, Truesdell CA (1958) Exact theory of stress and strain in rods and shells. Arch Rat Mech Anal 1:295–323CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16(1):1–18MathSciNetGoogle Scholar
  26. 26.
    Eringen AC, Suhubi ES (1964) Nonlinear theory of simple microelastic solids I. Int J Eng Sci 2:189–203CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Eringen AC (1999) Microcontinuum field theories, I—foundations and solids. Springer, New YorkCrossRefzbMATHGoogle Scholar
  28. 28.
    Gibbs JW (1901) Vector analysis. Yale University Press, New Haven (redacted by Wilson)Google Scholar
  29. 29.
    Green AE, Naghdi PM (1967) Micropolar and director theories of plates. Q J Mech Appl Math 20:183–199CrossRefzbMATHGoogle Scholar
  30. 30.
    Green G (1839) On the laws of reflection and refraction of light at the common surface of two non-crystallized media. Trans Cambridge Phil Soc 7:245–269Google Scholar
  31. 31.
    Grioli G (1960) Elasticità asimmetrica. Ann Mat Pura ed Applicata, Ser. IV, 50:389–417Google Scholar
  32. 32.
    Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh Braunschweig Wiss Ges 10:195zbMATHGoogle Scholar
  33. 33.
    Hellinger E (1914) Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein F, Wagner K (eds) Encyclopädia der mathematischen Wissenschaften. vol 4, Part 4. Springer, Berlin, pp 602–694Google Scholar
  34. 34.
    Heun K (1904) Ansätze und allgemeine Methoden der Systemmechanik. In: Klein F, Wagner K (eds) Encyclopädia der mathematischen Wissenschaften, vol 4/2, Article 11. Springer, Berlin, pp 359–504Google Scholar
  35. 35.
    Jaunzemis W (1967) Continuum mechanics. McMilan, New YorkzbMATHGoogle Scholar
  36. 36.
    Kafadar CB (1972) On the nonlinear theory of rods. Int J Eng Sci 10(4):369–391CrossRefzbMATHGoogle Scholar
  37. 37.
    Kafadar CB, Eringen AC (1971) Micropolar media-I—the classical theory. Int J Eng Sci 9:271–308CrossRefzbMATHGoogle Scholar
  38. 38.
    Kröner E (ed) (1968) Generalized continua (Proc IUTAM Symp Freudenstadt, 1967). Springer, BerlinGoogle Scholar
  39. 39.
    Larmor G (1891) On the propagation of a disturbance in a gyrostatically loaded medium. Proc Roy Soc Lond (Nov 1891)Google Scholar
  40. 40.
    Laval J (1957) L’élasticité du milieu cristallin-I, II, III. J Phys Radium 18(4):247–259; 18(5):289–296; 18(6):369–379Google Scholar
  41. 41.
    Le Corre Y (1956) La dissymétrie du tenseur des efforts et ses conséquences. J Phys Radium 17:934–939CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Levy JR (1970–1990) Article “Cosserat Eugène-Maurice-Pierre”. In: Gillispie CC (ed) Dictionary of scientific biography. Scribner’s and Sons, New York.
  43. 43.
    Lovett EO (1900) Koenigs’ lectures on kinematics. Bull Amer Math Soc 6/7:299–304 (with a reference—emphasizing the role of the mobile frame, curvilinear coordinates and the general introduction of deformations—to the Note added by the Cosserats)Google Scholar
  44. 44.
    Lukaszewicz G (1999) Micropolar fluids—theory and applications. Birkhauser, BostonCrossRefzbMATHGoogle Scholar
  45. 45.
    MacCullagh J (1839) An essay towards a dynamical theory of crystalline reflexion and refraction. Trans Roy Irish Acad Sci 21:17–50Google Scholar
  46. 46.
    Maugin GA (1970) Un principe variationnel pour des milieux micromorphiques non dissipatifs. C R Acad Sci Paris A271:807–810Google Scholar
  47. 47.
    Maugin GA (1971) Micromagnetism and polar media, Ph.D. Thesis, AMS Department, Princeton University, New Jersey, USA (April 1971) (All models are here based on a principle of action, Euclidean action being considered for the nonrelativistic cases)Google Scholar
  48. 48.
    Maugin GA (1988) Continuum mechanics of electromagnetic solids. North-Holland, AmsterdamzbMATHGoogle Scholar
  49. 49.
    Maugin GA (1998) On the structure of the theory of polar elasticity. Phil Trans Roy Soc Lond A356:1367–1395CrossRefMathSciNetGoogle Scholar
  50. 50.
    Maugin GA (2010) Generalized continuum mechanics: “What do we mean by that?”. In: Maugin GA, Metrikine AV (eds) Mechanics of generalized continua: one hundred years after the Cosserats. Springer, New York, pp 3–13CrossRefGoogle Scholar
  51. 51.
    Maugin GA (2013) Electromagnetism and generalized continua. In: Altenbach H, Eremeyev VA (eds) Generalized continua—from the theory to engineering applications. Springer, Wien, pp 301–360CrossRefGoogle Scholar
  52. 52.
    Maugin GA (2013) Continuum mechanics through the twentieth century: a concise historical perspective. Springer, DordrechtCrossRefGoogle Scholar
  53. 53.
    Maugin GA, Eringen AC (1972) Deformable magnetically saturated media-I–field equations. J Math Phys 13:143–155CrossRefGoogle Scholar
  54. 54.
    Maugin GA, Eringen AC (1972) Relativistic continua with directors. J Math Phys 13:1788–1798CrossRefGoogle Scholar
  55. 55.
    Maugin GA, Metrikine AV (eds) (2010) Mechanics of generalized continua: one hundred years after the Cosserats. Springer, New YorkGoogle Scholar
  56. 56.
    Mindlin RD (1964) Microstructure in linear elasticity. Arch Rat Mech Anal 16:51–78CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Mukhmadov V, Winitzki S (2007) Introduction to quantum effects in gravity. Cambridge University Press, UKGoogle Scholar
  58. 58.
    Neuber H (1964) On the general solution of linear elastic problems in isotropic and anisotropic Cosserat Continua. In: Görtler H (ed) Proceedings of 11th international conference of applied mechanics (München, 1964). Springer, Berlin, pp 153–158Google Scholar
  59. 59.
    Noether E (1918) Invariante variationsproblem. Klg-Ges. Wiss Nach Göttingen. Math Phys Kl 2:235–257. (English translation by M. Tavel, Transp. Theory Stat Phys I: 186–207, 1971)Google Scholar
  60. 60.
    Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, Oxford, UK (Translation from the Polish)Google Scholar
  61. 61.
    O’Connor JJ, Robertson EF (2012) Article “Eugène Cosserat”. In: Mac tutor history of mathematics. Archive, University of St Andrews, Scotland
  62. 62.
    Palmov A (1964) Fundamental equations of the theory of asymmetric elasticity. Prikl Mat Mekh 28:401–408MathSciNetGoogle Scholar
  63. 63.
    Pietraszkiewicz W, Eremeyev AV (2009) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46:774–787CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Pommaret JF (1997) F. Cosserat et le secret de la théorie mathématique de l’élasticité. Ann. Ponts et Chaussées, Nouvelle série, no. 82, 59–66Google Scholar
  65. 65.
    Schaefer H (1967) Das Cosserat-Kontinuum. Z Angew Math Mech 47:34Google Scholar
  66. 66.
    Stojanovic R (1969) Mechanics of polar continua, CISM Lectures, Udine, Italy (Augmented version with a long bibliography: Recent developments in the theory of polar media, Udine, Course no. 27, 1970)Google Scholar
  67. 67.
    Stokes VK (1984) Theories of fluids with microstructure. Springer, BerlinCrossRefGoogle Scholar
  68. 68.
    Sudria J (1925) Contribution à la théorie de l’action euclidienne. Ann Fac Sci Toulouse, 3ème série, 17:63–152Google Scholar
  69. 69.
    Sudria J (1935) L’action euclidienne de déformation et de mouvement. Mémorial des Sciences Mathématiques, vol 29. Gauthier-Villars, Paris, 56 pGoogle Scholar
  70. 70.
    Teodorescu PP (1975) Dynamic of linear elastic bodies. Abacus Press, Tunbridge Wells, Kent, U.K. (Translation from the Romanian)Google Scholar
  71. 71.
    Thomson W (Lord Kelvin), Tait PG (1867) Treatise on natural philosophy, 1st edn, Oxford (2nd edn, Cambridge, 1879–1883)Google Scholar
  72. 72.
    Toupin RA (1964) Theories of elasticity with couple-stress. Arch Rat Mech Anal 17:85–112CrossRefzbMATHMathSciNetGoogle Scholar
  73. 73.
    Truesdell CA (1966) Six lectures on modern natural philosophy. Springer, BerlinCrossRefzbMATHGoogle Scholar
  74. 74.
    Truesdell CA, Toupin RA (1960) The classical theory of fields. In: Flügge S (ed) Handbuch der Physik, Bd. III/1. Springer, BerlinGoogle Scholar
  75. 75.
    Voigt W (1887) Teoretische Studien über Elasticitätverhältinsse der Krystalle, I.II. Abh K Ges Wissen Göttingen 34:3–52, 53–100Google Scholar
  76. 76.
    Wilson EB (1912) Review of Chwolson’s treatise on physics (French edition). Bull Amer Math Soc 18:497–508CrossRefMathSciNetGoogle Scholar
  77. 77.
    Wilson EB (1913) An advance in theoretical mechanics: Théorie des corps déformables by E. and F. Cosserat. Bull Amer Math Soc 19(5):242–246CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut Jean Le Rond d’AlembertUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations