# About the Cosserats’ Book of 1909

- 5 Citations
- 1.2k Downloads

## Abstract

The Cosserat brothers published in 1909 an original book where they favour a variational formulation of continuum mechanics together with an invariance which they call “Euclidean invariance” of the Lagrangian-Hamiltonian action. This strategy places on an equal footing translations and possible rotational degrees of freedom, yielding in a natural way what is now commonly called the theory of Cosserat or oriented—or polar—continua with asymmetric stresses and the new notion of couple stresses. Here their landmark work is replaced in its epoch making context underlining the influences they benefited from and the influence they have exerted on their direct contemporaries and much later on (in the second-half of the twentieth century). The sociological scientific environment of the early twentieth century and the typical publication strategy of the time are outlined, explaining thus the Cosserats’ own strategy. The further reception of their work from 1909 to the Second World War and the revival of interest in it in the nineteen-fifties are examined critically. Finally, the formalization of their work in a new landscape of continuum thermo-mechanics created essentially by Truesdell is evoked together with other influences and further developments.

## Keywords

Cosserat continua Euclidean invariance Couple stress Variational formulation Generalized continua## References

- 1.Aero EL, Kuvshinskii EV (1961) Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Phys Solid State 2:1272–1281 (English translation from the Russian edition, 1960)Google Scholar
- 2.Altenbach H, Eremeyev VA (eds) (2013) Generalized continua—from the theory to engineering applications (CISM Lecture notes, Udine, 2011). Springer, WienGoogle Scholar
- 3.Appell P (1909) Traité de mécanique rationnelle, T.III, Gauthier-Villars, paris (Note sur la théorie de l’action euclidienne par E. and F. Cosserat, pp 557–629) (reprinted in fac-simile form by Editions Gabay, Paris, 1991)Google Scholar
- 4.Ball JM, James RD (2002) The scientific life and influence of Clifford Ambrose Truesdell III. Arch Rat Mech Anal 161:1–26CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Barré de Saint-Venant AJC (1883) Théorie des corps élastiques, French translation from the German with many comments and additions of “Clebsch A (1862) Theorie der Elastizität fester Körper, Leipzig”Google Scholar
- 6.Brocato M, Chatzis K (2009) Historical essay: In: Reprint of the Cosserats’ 1909 book, Hermann Archives, ParisGoogle Scholar
- 7.Buhl A (1931) «Eugène Cosserat». Ann Fac Sci Toulouse, 3
^{ème}Série, 23, pp v–viiiGoogle Scholar - 8.Cartan E (1922) Sur une généralisation de la notion de courbure de Riemann et les espaces à Torsion. C R Acad Sci Paris 174:593–595zbMATHGoogle Scholar
- 9.Casey J, Crochet MJ (1995) Paul M Naghdi (1924–1994). In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids: a collection of papers in honor of Paul M Naghdi. Birkhäuser, Boston, pp S1–S32CrossRefGoogle Scholar
- 10.Chwolson OD (1906) Traité de physique (traduit du Russe), Paris, Hermann (vol I, Note sur la dynamique du point et du corps invariable by E. and F. Cosserat, pp 236–273)Google Scholar
- 11.Chwolson OD (1909) Traité de physique (traduit du Russe), Paris, Hermann (vol II, Note sur la théorie des corps déformables by E. and F. Cosserat, pp 953–1173)Google Scholar
- 12.Cosserat E, Cosserat F (1896) Sur la théorie de l’élasticité. Ann Fac Sci Toulouse, 1
^{ère}série 10(3–5): I1–I116Google Scholar - 13.Cosserat E, Cosserat F (1909) Théorie des corps déformables, Hermann, Paris, 226 pages). Reprint by Editions Gabay, Paris, 2008; Reprint by Hermann Archives, Paris, 2009, with a Preface by G. Capriz and an historical essay by M. Brocato and K. Chatzis. [English Translation: N68-15456: Clearinghouse Federal Scientific and Technical Information, Springfield, Virginia NASA, TT F-11561 (February 1968); another translation by D. Delphenich, 2007]Google Scholar
- 14.Cosserat E, Cosserat F (1915) Principes de la mécanique rationnelle (after the original article in German by A. Voss). In: Encyclopédie des sciences mathématiques pures et appliquées, vol IV. Gautier-Villars, Paris, pp 1–187Google Scholar
- 15.Crowe MJ (1967) A history of vector analysis. University of Notre Dame Press (Reprint, Dover, New York, 1985)Google Scholar
- 16.Darboux G (1887–1896) Leçons sur la théorie générale des surfaces, in 4 volumes. ParisGoogle Scholar
- 17.Darboux G (1898) Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Vol I. ParisGoogle Scholar
- 18.Duhem P (1891) Hydrodynamique, élasticité et acoustique. A. Hermann Editeur, ParisGoogle Scholar
- 19.Duhem P (1896) Le potentiel thermodynamique et la pression hydrostatique. Ann Ecole Norm Sup 10:187–230MathSciNetGoogle Scholar
- 20.Duhem P (1906–1913) Etudes sur Léonard de Vinci—ceux qu’il a lus et ceux qui l’ont lu, 3 volumes. Hermann, ParisGoogle Scholar
- 21.Eremeyev AV, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49:1993–2005CrossRefGoogle Scholar
- 22.Ericksen JL (1960) Anisotropic fluids. Arch Rat Mech Anal 4:231–237CrossRefzbMATHMathSciNetGoogle Scholar
- 23.Ericksen JL, Rivlin RS (1954) Large deformations of homogeneous anisotropic materials. Arch Rat Mech Anal 3:281–301zbMATHMathSciNetGoogle Scholar
- 24.Ericksen JL, Truesdell CA (1958) Exact theory of stress and strain in rods and shells. Arch Rat Mech Anal 1:295–323CrossRefzbMATHMathSciNetGoogle Scholar
- 25.Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16(1):1–18MathSciNetGoogle Scholar
- 26.Eringen AC, Suhubi ES (1964) Nonlinear theory of simple microelastic solids I. Int J Eng Sci 2:189–203CrossRefzbMATHMathSciNetGoogle Scholar
- 27.Eringen AC (1999) Microcontinuum field theories, I—foundations and solids. Springer, New YorkCrossRefzbMATHGoogle Scholar
- 28.Gibbs JW (1901) Vector analysis. Yale University Press, New Haven (redacted by Wilson)Google Scholar
- 29.Green AE, Naghdi PM (1967) Micropolar and director theories of plates. Q J Mech Appl Math 20:183–199CrossRefzbMATHGoogle Scholar
- 30.Green G (1839) On the laws of reflection and refraction of light at the common surface of two non-crystallized media. Trans Cambridge Phil Soc 7:245–269Google Scholar
- 31.Grioli G (1960) Elasticità asimmetrica. Ann Mat Pura ed Applicata, Ser. IV, 50:389–417Google Scholar
- 32.Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh Braunschweig Wiss Ges 10:195zbMATHGoogle Scholar
- 33.Hellinger E (1914) Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein F, Wagner K (eds) Encyclopädia der mathematischen Wissenschaften. vol 4, Part 4. Springer, Berlin, pp 602–694Google Scholar
- 34.Heun K (1904) Ansätze und allgemeine Methoden der Systemmechanik. In: Klein F, Wagner K (eds) Encyclopädia der mathematischen Wissenschaften, vol 4/2, Article 11. Springer, Berlin, pp 359–504Google Scholar
- 35.Jaunzemis W (1967) Continuum mechanics. McMilan, New YorkzbMATHGoogle Scholar
- 36.Kafadar CB (1972) On the nonlinear theory of rods. Int J Eng Sci 10(4):369–391CrossRefzbMATHGoogle Scholar
- 37.Kafadar CB, Eringen AC (1971) Micropolar media-I—the classical theory. Int J Eng Sci 9:271–308CrossRefzbMATHGoogle Scholar
- 38.Kröner E (ed) (1968) Generalized continua (Proc IUTAM Symp Freudenstadt, 1967). Springer, BerlinGoogle Scholar
- 39.Larmor G (1891) On the propagation of a disturbance in a gyrostatically loaded medium. Proc Roy Soc Lond (Nov 1891)Google Scholar
- 40.Laval J (1957) L’élasticité du milieu cristallin-I, II, III. J Phys Radium 18(4):247–259; 18(5):289–296; 18(6):369–379Google Scholar
- 41.Le Corre Y (1956) La dissymétrie du tenseur des efforts et ses conséquences. J Phys Radium 17:934–939CrossRefzbMATHMathSciNetGoogle Scholar
- 42.Levy JR (1970–1990) Article “Cosserat Eugène-Maurice-Pierre”. In: Gillispie CC (ed) Dictionary of scientific biography. Scribner’s and Sons, New York. http://www.encyclopedia.com/doc/1G2-2830900999.html
- 43.Lovett EO (1900) Koenigs’ lectures on kinematics. Bull Amer Math Soc 6/7:299–304 (with a reference—emphasizing the role of the mobile frame, curvilinear coordinates and the general introduction of deformations—to the Note added by the Cosserats)Google Scholar
- 44.Lukaszewicz G (1999) Micropolar fluids—theory and applications. Birkhauser, BostonCrossRefzbMATHGoogle Scholar
- 45.MacCullagh J (1839) An essay towards a dynamical theory of crystalline reflexion and refraction. Trans Roy Irish Acad Sci 21:17–50Google Scholar
- 46.Maugin GA (1970) Un principe variationnel pour des milieux micromorphiques non dissipatifs. C R Acad Sci Paris A271:807–810Google Scholar
- 47.Maugin GA (1971) Micromagnetism and polar media, Ph.D. Thesis, AMS Department, Princeton University, New Jersey, USA (April 1971) (All models are here based on a principle of action, Euclidean action being considered for the nonrelativistic cases)Google Scholar
- 48.Maugin GA (1988) Continuum mechanics of electromagnetic solids. North-Holland, AmsterdamzbMATHGoogle Scholar
- 49.Maugin GA (1998) On the structure of the theory of polar elasticity. Phil Trans Roy Soc Lond A356:1367–1395CrossRefMathSciNetGoogle Scholar
- 50.Maugin GA (2010) Generalized continuum mechanics: “What do we mean by that?”. In: Maugin GA, Metrikine AV (eds) Mechanics of generalized continua: one hundred years after the Cosserats. Springer, New York, pp 3–13CrossRefGoogle Scholar
- 51.Maugin GA (2013) Electromagnetism and generalized continua. In: Altenbach H, Eremeyev VA (eds) Generalized continua—from the theory to engineering applications. Springer, Wien, pp 301–360CrossRefGoogle Scholar
- 52.Maugin GA (2013) Continuum mechanics through the twentieth century: a concise historical perspective. Springer, DordrechtCrossRefGoogle Scholar
- 53.Maugin GA, Eringen AC (1972) Deformable magnetically saturated media-I–field equations. J Math Phys 13:143–155CrossRefGoogle Scholar
- 54.Maugin GA, Eringen AC (1972) Relativistic continua with directors. J Math Phys 13:1788–1798CrossRefGoogle Scholar
- 55.Maugin GA, Metrikine AV (eds) (2010) Mechanics of generalized continua: one hundred years after the Cosserats. Springer, New YorkGoogle Scholar
- 56.Mindlin RD (1964) Microstructure in linear elasticity. Arch Rat Mech Anal 16:51–78CrossRefzbMATHMathSciNetGoogle Scholar
- 57.Mukhmadov V, Winitzki S (2007) Introduction to quantum effects in gravity. Cambridge University Press, UKGoogle Scholar
- 58.Neuber H (1964) On the general solution of linear elastic problems in isotropic and anisotropic Cosserat Continua. In: Görtler H (ed) Proceedings of 11th international conference of applied mechanics (München, 1964). Springer, Berlin, pp 153–158Google Scholar
- 59.Noether E (1918) Invariante variationsproblem. Klg-Ges. Wiss Nach Göttingen. Math Phys Kl 2:235–257. (English translation by M. Tavel, Transp. Theory Stat Phys I: 186–207, 1971)Google Scholar
- 60.Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, Oxford, UK (Translation from the Polish)Google Scholar
- 61.O’Connor JJ, Robertson EF (2012) Article “Eugène Cosserat”. In: Mac tutor history of mathematics. Archive, University of St Andrews, Scotland http://www-history.mcs.st-andrews.ac.uk/Biographies/Cosserat.html
- 62.Palmov A (1964) Fundamental equations of the theory of asymmetric elasticity. Prikl Mat Mekh 28:401–408MathSciNetGoogle Scholar
- 63.Pietraszkiewicz W, Eremeyev AV (2009) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46:774–787CrossRefzbMATHMathSciNetGoogle Scholar
- 64.Pommaret JF (1997) F. Cosserat et le secret de la théorie mathématique de l’élasticité. Ann. Ponts et Chaussées, Nouvelle série, no. 82, 59–66Google Scholar
- 65.Schaefer H (1967) Das Cosserat-Kontinuum. Z Angew Math Mech 47:34Google Scholar
- 66.Stojanovic R (1969) Mechanics of polar continua, CISM Lectures, Udine, Italy (Augmented version with a long bibliography: Recent developments in the theory of polar media, Udine, Course no. 27, 1970)Google Scholar
- 67.Stokes VK (1984) Theories of fluids with microstructure. Springer, BerlinCrossRefGoogle Scholar
- 68.Sudria J (1925) Contribution à la théorie de l’action euclidienne. Ann Fac Sci Toulouse, 3
^{ème}série, 17:63–152Google Scholar - 69.Sudria J (1935) L’action euclidienne de déformation et de mouvement. Mémorial des Sciences Mathématiques, vol 29. Gauthier-Villars, Paris, 56 pGoogle Scholar
- 70.Teodorescu PP (1975) Dynamic of linear elastic bodies. Abacus Press, Tunbridge Wells, Kent, U.K. (Translation from the Romanian)Google Scholar
- 71.Thomson W (Lord Kelvin), Tait PG (1867) Treatise on natural philosophy, 1st edn, Oxford (2nd edn, Cambridge, 1879–1883)Google Scholar
- 72.Toupin RA (1964) Theories of elasticity with couple-stress. Arch Rat Mech Anal 17:85–112CrossRefzbMATHMathSciNetGoogle Scholar
- 73.Truesdell CA (1966) Six lectures on modern natural philosophy. Springer, BerlinCrossRefzbMATHGoogle Scholar
- 74.Truesdell CA, Toupin RA (1960) The classical theory of fields. In: Flügge S (ed) Handbuch der Physik, Bd. III/1. Springer, BerlinGoogle Scholar
- 75.Voigt W (1887) Teoretische Studien über Elasticitätverhältinsse der Krystalle, I.II. Abh K Ges Wissen Göttingen 34:3–52, 53–100Google Scholar
- 76.Wilson EB (1912) Review of Chwolson’s treatise on physics (French edition). Bull Amer Math Soc 18:497–508CrossRefMathSciNetGoogle Scholar
- 77.Wilson EB (1913) An advance in theoretical mechanics: Théorie des corps déformables by E. and F. Cosserat. Bull Amer Math Soc 19(5):242–246CrossRefMathSciNetGoogle Scholar