Piola and Kirchhoff: On Changes of Configurations

  • Gérard A. MauginEmail author
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 214)


The seminal contribution of Gabrio Piola to the foundations of continuum mechanics is critically examined directly on the basis of his publications (1825–1848). This emphasizes the original approach of Piola who favoured a direct projection on the material configuration (where material particles are “labelled”), this yielding the now well known Piola–Kirchhoff stresses in the so-called Piola format of continuum mechanics. Piola is a follower of Lagrange and Poisson, much more than of Cauchy. But he established the connection of his equations with those of the more familiar Euler–Cauchy format (expressed in the actual configuration) of elasticity. Kirchhoff, much more known than Piola because of his renowned works in electricity, spectroscopy and thermo-chemistry, also contributed to the same format as Piola, hence his name attached to that of Piola. The works of Piola acquired a well deserved recognition and an excellent range of applications with the expansion of nonlinear elasticity, the modern theory of material inhomogeneities and the notion of configurational forces.


Continuum mechanics Finite strains Piola–Kirchhoff stresses Cauchy–Green tensors Principle of virtual work Elasticity 


  1. 1.
    Beltrami E (1880–1882) Sulle equazioni generali della elasticità. In: Opere matematiche, vol 3. Hoepli, Milano (1902–1920), pp 383, 407Google Scholar
  2. 2.
    Betti E (1874) Teoria dell’elasticità. Soldaini, PisaGoogle Scholar
  3. 3.
    Capecchi D (2003) Gabrio Piola e la meccanica italiana agli inizi dell’ottocento. Atti del XXIII Congresso Nazionale di Storia della Fisica e dell’Astronomia. Bari, 5–7 June 2003, pp 95–108 [available on the web in pdf format]Google Scholar
  4. 4.
    Capecchi D (2012) History of virtual work laws: a history of mechanics prospective. Birkhäuser-Springer, MilanCrossRefGoogle Scholar
  5. 5.
    Clebsch RFA (1862) Theorie der Elastizität fester Körper, Teubner, Leipzig [French translation with many additions and comments by A. Barré de Saint-Venant, Paris, 1886]Google Scholar
  6. 6.
    Cauchy AL (1828) Recherches sur les équations qui expriment l’équilibre du mouvement intérieur d’un corps solide, élastique ou non élastique. Exercices de Mathématiques, vol 3, 160–187, Sept 1828 [Also, in Oeuvres complètes, s II, vol 8, pp 195–226, Gauthier-Villars, Paris, 1882–1974]; Sur la pression ou tension dans un corps solide, ibid, vol 2, 42–57, March 1827; and in Oeuvres complètes, s II, vol 7, 60–78]Google Scholar
  7. 7.
    Cosserat E, Cosserat F (1909) Théorie des corps déformables. Hermann, Paris [Facsimile reprint by Gabay, Paris, 2009]Google Scholar
  8. 8.
    Duhem P (1891) Hydrodynamique, élasticité, acoustique. Hermann, ParisGoogle Scholar
  9. 9.
    Germain P (1973) La méthode des puissances virtuelles en mécanique des milieux continus, Première partie: théorie du second gradient. J. Mécanique (Paris) 12:235–274zbMATHMathSciNetGoogle Scholar
  10. 10.
    Green G (1839) On the law of the reflection and refraction of light at the common surfaces of two crystallized media. Trans Cambridge Phil Soc 7: 1–24, 121–140 [also in mathematical papers of Green G, In: Ferrers NM (eds) McMillan, London, 1871; reprinted by Chelsea, New York, 1970]Google Scholar
  11. 11.
    Hellinger E (1914) Die allgemein Ansätze der Mechanik der Kontinua. In: Klein F, Wagner K (eds) Enz. Math.Wiss. vol 4, part 4. Springer, Berlin, pp 602–694Google Scholar
  12. 12.
    Jungnickel C, McCormmach E (1986) Intellectual mastery of nature (Theoretical physics from Ohm to Einstein), vol. 1. The torch of mathematics 1800–1870. University of Chicago Press, ChicagoGoogle Scholar
  13. 13.
    Kirchhoff G (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journ f d reine und angewandte Math 40:51–88CrossRefzbMATHGoogle Scholar
  14. 14.
    Kirchhoff G (1852) Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleiner Verschiebungen seiner Teile. Sitzgsber Akad Wiss Wien 9:762–773Google Scholar
  15. 15.
    Kirchhoff G (1859) Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastische Stabes. Journ f d reine und angewandte Math 56:285–313CrossRefzbMATHGoogle Scholar
  16. 16.
    Kirchhoff G (1876) Vorlesungen über mathematische Physik: Mechanik (known as “Lectures on Mechanics“). Teubner, Leipzig [available on the site Gallica of the Bibliothèque Nationale de France (BNF)]Google Scholar
  17. 17.
    Lagrange JL (1806) Leçons sur le calcul des fonctions. Vve Courcier, Paris, p 462Google Scholar
  18. 18.
    Marsden JA, Hughes T (1975) Mathematical theory of elasticity. Academic Press, New York [also as a Dover reprint, New York]Google Scholar
  19. 19.
    Maugin GA (1980) The principle of virtual power in continuum mechanics: application to coupled fields. Acta Mech 35:1–70CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, LondonCrossRefzbMATHGoogle Scholar
  21. 21.
    Maugin GA (2011) Configurational forces. Chapman & Hall/Taylor and Francis, New YorkzbMATHGoogle Scholar
  22. 22.
    Maugin GA (2013) About the Cosserats’ book of 1909. Preprint UPMC, Paris [see also  Chap. 8 in the present book]
  23. 23.
    Nanson EJ (1874) Note on hydrodynamics. Messenger of Mathematics 3: 120–123 [also, ibid, 7: 182–183, 1877–1878]Google Scholar
  24. 24.
    Piola G (1825) Sull’applicazione della meccanica analitica del Lagrange ai principali problemo. Regia Stamperia, Milan [Memoria di Gabrio Piola presentata al concorso del premio e coronata dall’I.R. Istituto di Scienze, ecc. nella solennita del Giorno 4 ottobre 1824]Google Scholar
  25. 25.
    Piola G (1833) La meccanica de’corpi naturalmente estesi tratta col calculo delle variazioni. In: Opusculi matematici e fisici di diversi autori, Giusti, Milan, pp 201–236Google Scholar
  26. 26.
    Piola G (1836) Nueva analisi per tutte le questioni della meccanica moleculare. In: Memorie di matematica e di fisica della Società Italiana delle Scienze, Modena 21: 155–321 (received 1835)Google Scholar
  27. 27.
    Piola G (1848) Intorno alle equazioni fondamentale del movimento dei corpi qualsivogliono, considerati secondo naturale loro forma e costituzione. In: Memorie di matematica e di fisica della Società Italiana delle Scienze, Modena 24(1): 1–186 (received 1845)Google Scholar
  28. 28.
    Poincaré H (1892) Leçons sur la théorie de l’élasticité. Georges Carré, Paris [Facsimile reprint, Gabay, 1990; also University of Michigan, Ann Arbor, 2012]Google Scholar
  29. 29.
    Poisson SD (1829) Mémoire sur l’équilibre et le mouvement de corps élastiques. Mémoires de l’Institut de France, vol VIII, 357–570 (and vol X, p 578)Google Scholar
  30. 30.
    Poisson SD (1833) Traité de mécanique, vol II. Bachelier, ParisGoogle Scholar
  31. 31.
    Timoshenko SP (1953) History of the strength of materials. McGraw Hill, New York [Dover reprint, New York, 1983]Google Scholar
  32. 32.
    Todhunter I, Pearson K (1893) A history of the theory of elasticity and the strength of materials from Galilei to the present time, vol. 2: Saint-Venant to Lord Kelvin. Cambridge University Press, UKGoogle Scholar
  33. 33.
    Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Handuch der Physik, Bd III/1. Springer, BerlinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut Jean Le Rond d’AlembertUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations