Skip to main content

Topology Optimization of Hybrid Power Trains

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 455))

Abstract

Topology optimization methods for continuum systems (structural topology, shape, material) are well-established. However, these methods do not apply to non-continuum or dynamic systems with discrete components with unique characteristics as with hybrid vehicles. This chapter examines the power train topology and control design optimization problem at vehicle system level. The design space related to power train and control system optimization level is rapidly increasing with new developments in power train, auxiliary technologies, system architectures (topologies) and cyber-physical systems. The multi-objective, mixed or hybrid (continuous/discrete time) character on both coupled levels of the problem requires relative long computation time. Therefore, it requires a bi-level (nested) or simultaneous system design approach. Since, sequential or iterative design procedures fail to prove system-level optimality. In this chapter, some illustrative examples are discussed related to nested control and design optimization problems related to continuous/stepped-gear transmission shifting, power split control and/or in combination with topology optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The backward-in-time algorithm starts at a given final state; either algorithm is convenient to used when both (initial and final) states are fixed. The forward algorithm is more convenient as it will optimize the final state.

  2. 2.

    HP EliteBook 8530w, Core 2 Due, CPU T9600 @ 2.8 GHz, RAM 4.0 GB

References

  1. Kirk D (1970) Optimal control theory: an introduction. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Delprat S, Lauber J, Guerra T, Rimaux J (2004) Control of a parallel hybrid powertrain: optimal control. IEEE Trans Veh Technol 53(3):872–881

    Article  Google Scholar 

  3. Serrao L, Sciarretta A, Grondin O, Chasse A, Creff Y, di Domenico D, Pognant-Gros P, Querel C, Thibault L (2011) Open issues in supervisory control of hybrid electric vehicles: a unified approach using optimal control methods. In: Les rencontres scientifiques IFP energies nouvelles internat scient conf hybrid and electric vehicles, Rueil-Malmaison, France

    Google Scholar 

  4. Sciarretta A, Back M, Guzzella L (2004) Optimal control of parallel hybrid electric vehicles. IEEE Trans Control Sys Technol 12(3):352–363

    Article  Google Scholar 

  5. Sciarretta A, Guzzella L (2007) Control of hybrid electric vehicles. IEEE Control Sys Mag 27(2):60–70

    Article  Google Scholar 

  6. Koot M, Kessels J (2005) Energy management strategies for vehicular electric power systems. IEEE Trans Veh Technol 54:771–782

    Article  Google Scholar 

  7. Ngo V, Hofman T, Steinbuch M, Serrarens A (2012) Optimal control of the gearshift command for hybrid electric vehicles. IEEE Trans Veh Technol 61(8):3531–3543

    Article  Google Scholar 

  8. Hofman T, Ebbesen S, Guzzella L (2012) Topology optimization for hybrid electric vehicles with automated transmissions. IEEE Trans Veh Technol 61(6):2442–2451

    Article  Google Scholar 

  9. Ambühl D, Sundström O, Sciarretta A, Guzzella L (2010) Explicit optimal control policy and its practical application for hybrid electric powertrains. Control Eng Pract 18(12):1429–1439

    Article  Google Scholar 

  10. Wei X, Guzzella L, Utkin V, Rizzoni G (2007) Model-based fuel optimal control of hybrid electric vehicle using variable structure control systems. Jf Dyn Sys Meas Control 129:13–19

    Article  Google Scholar 

  11. Murgovski N, Johannesson L, Hellgren J, Egardt B, Sjöberg J (2011) Convex optimization of charging infrastructure design and component sizing of a plug-in series HEV powertrain. In: Proceedings of the 18th world congress the international federation of automatic control, IFAC, Ed. Milano, Italy: IFAC, Aug 2011, pp 13052–13057

    Google Scholar 

  12. Patil RM (2012) Combined design and control optimization: application to optimal PHEV design and control for multiple objectives. Ph.D. dissertation, University of Michigan

    Google Scholar 

  13. Sinoquet D, Rousseau G, Milhau Y (2011) Design optimization and optimal control for hybrid vehicles. Optim Eng 12:199–213

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang X, Li C-T, Kum D, Peng H (2012) Prius\(^+\) and volt\(^-\): configuration analysis of power-split hybrid vehicles with a single planetary gear. IEEE Trans VehTechnol 61(8):3544–3552

    Google Scholar 

  15. Liu J, Peng H (2008) Automated modelling of power-split hybrid vehicles. In: Proceedings of the 17th world congress, IFAC, Seoul, Korea, Jul 2008, pp 4648–4653

    Google Scholar 

  16. Fathy H, Reye J, Papalambros P, Ulsog A (2001) On the coupling between the plant and controller optimization problems. In: Proceedings of American control conference, ACC, Ed., Arlington, VA, USA, Jun 2001, pp 1864–1869

    Google Scholar 

  17. Filipi Z, Louca L, Daran B, Lin C-C, Yildir U, Wu B, Kokkolaras M, Assanis D, Peng H, Papalambros P, Stein J, Szkubiel D, Chapp R (2004) Combined optimization of design and power management of the hydraulic hybrid propulsion system for the 6—6 medium truck. Int J Heavy Veh Sys 11(3/4):372–402

    Article  Google Scholar 

  18. Ebbesen S, Elbert P, Guzzella L (2013) Engine downsizing and electric hybridization under consideration of cost and drivability. Oil Gas Sci Technol—RevIFP Energies nouvelles 68(1): 109–116

    Google Scholar 

  19. Assanis D, Delagrammatikas G, Fellini R, Filipi Z, Liedtke J, Michelena N, Papalambros P, Reyes D, Rosenbaum D, Sales A, Sasena M (1999) An optimization approach to hybrid electric propulsion system design. J Mech Struct Mach, Automot Res Cent Spec Ed 27:393–421

    Article  Google Scholar 

  20. Wipke K, Cuddy M, Burch S (1999) ADVISOR 2.1: user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans Veh Technol 48(6):1751–1761

    Article  Google Scholar 

  21. Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press, New York

    MATH  Google Scholar 

  22. Fletcher R, Leyffer S (1994) Solving mixed integer non linear programs by outer approximation. Math Prog 66:327–349

    Article  MATH  MathSciNet  Google Scholar 

  23. Linnala M, Madetoja E, Ruotsalainen H, Hämäläinen J (2011) Bi-level optimization for a dynamic multiobjective problem. Eng Optim 44(2):195–207

    Article  Google Scholar 

  24. Betsekas D (2000) Dynamic programming and optimal control. Athena Scientific, Belmont

    Google Scholar 

  25. Murgovskia N, Johannesson L, Sjöberg J, Egardt B (2012) Component sizing of a plug-in hybrid electric powertrain via convex optimization. Mechatronics 22(1):106–120

    Article  Google Scholar 

  26. Elbert P (2013) Noncausal and causal optimization strategies for hybrid electric vehicles. Ph.D. dissertation, ETH, Zurich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Hofman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hofman, T., Steinbuch, M. (2014). Topology Optimization of Hybrid Power Trains. In: Waschl, H., Kolmanovsky, I., Steinbuch, M., del Re, L. (eds) Optimization and Optimal Control in Automotive Systems. Lecture Notes in Control and Information Sciences, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-319-05371-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05371-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05370-7

  • Online ISBN: 978-3-319-05371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics