Skip to main content

Enhanced Water Flow in Carbon Nanotubes and the Navier Slip Condition

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2012

Part of the book series: Mathematics in Industry ((TECMI,volume 19))

  • 1030 Accesses

Abstract

A possible explanation for the enhanced flow in carbon nanotubes is given using a mathematical model that includes a depletion layer with reduced viscosity near the wall. In the limit of large tubes the model predicts no noticeable enhancement. For smaller tubes the model predicts enhancement that increases as the radius decreases. An analogy between the reduced viscosity and slip-length models shows that the term slip-length is misleading and that on surfaces which are smooth at the nanoscale it may be thought of as a length-scale associated with the size of the depletion region and viscosity ratio. The model therefore provides a physical interpretation of the classical Navier slip condition and explains why “slip-lengths” may be greater than the tube radius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denn, M.M.: Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 33, 265–287 (2001)

    Article  Google Scholar 

  2. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)

    Article  Google Scholar 

  3. Tretheway, D.C., Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14(3), L9–L12 (2002)

    Article  Google Scholar 

  4. Choi, C.-H., Westin, J.A., Breuer, K.S.: Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15(10), 2897–2902 (2003)

    Article  Google Scholar 

  5. Whitby, M., Cagnon, L., Thanou, M., Quirke, N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(9), 2632–2637 (2008)

    Article  Google Scholar 

  6. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006)

    Article  Google Scholar 

  7. Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Enhanced flow in carbon nanotubes. Nature 438, 44 (2005)

    Article  Google Scholar 

  8. Thomas, J.A., McGaughey, A.J.H.: Reassessing fast water transport through carbon nanotubes. Nano Lett. 8(9), 2788–2793 (2008)

    Article  Google Scholar 

  9. Verweij, H., Schillo, M.C., Li, J.: Fast mass transport through carbon nanotube membranes. Small 3(12), 1996–2004 (2007)

    Article  Google Scholar 

  10. Werder, T., et al.: Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett. 1, 697–702 (2001)

    Article  Google Scholar 

  11. Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(8), 188–190 (2001)

    Article  Google Scholar 

  12. Noya, A., et al.: Nanofluidics in carbon nanotubes. NanoToday 2(6), 22–29 (2007)

    Article  Google Scholar 

  13. Vinogradova, O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31–60 (1999)

    Article  Google Scholar 

  14. Eijkel, J.C.T., van den Berg, A.: Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005)

    Article  Google Scholar 

  15. Myers, T.G.: Why are slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10, 1141–1145 (2011)

    Article  Google Scholar 

  16. Joseph, S., Aluru, N.R.: Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2), 452–458 (2008)

    Article  Google Scholar 

  17. Thomas, J.A., McGaughey, A.J.H.: Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. J. Chem. Phys. 128, 084715 (2008)

    Article  Google Scholar 

  18. Verdaguer, A., Sacha, G.M., Bluhm, H., Salmeron, M.: Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006)

    Article  Google Scholar 

  19. Travis, K.P., Todd, B.D., Evans, D.J.: Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev. E 55(4), 4288–4295 (1997)

    Article  Google Scholar 

  20. Cottin-Bizonne, C., Cross, B., Steinberger, A., Charlaix, E.: Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102 (2005)

    Article  Google Scholar 

  21. Alexeyev, A.A., Vinogradova, O.I.: Flow of a liquid in a nonuniformly hydrophobized capillary. Colloids Surf. A Physicochem. Eng. Aspects 108, 173–179 (1996)

    Article  Google Scholar 

  22. Zhu, Y., Granick, S.: Rate-dependent slip of Newtonian liquids at smooth surfaces. Phys. Rev. Lett. 87, 96105 (2001)

    Article  Google Scholar 

  23. Thomas, J.A., McGaughey, A.J.H., Kuter-Arnebeck, O.: Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int. J. Therm. Sci. 49, 281–289 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of this research through the Marie Curie International Reintegration Grant Industrial applications of moving boundary problems Grant no. FP7-256417 and Ministerio de Ciencia e Innovación Grant MTM2011-23789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim G. Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Myers, T.G. (2014). Enhanced Water Flow in Carbon Nanotubes and the Navier Slip Condition. In: Fontes, M., Günther, M., Marheineke, N. (eds) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry(), vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-05365-3_27

Download citation

Publish with us

Policies and ethics