Skip to main content

Probing the Standard Model at Hadron Colliders

  • Chapter
  • First Online:
LHC Phenomenology

Part of the book series: Scottish Graduate Series ((SGS))

  • 910 Accesses

Abstract

Although the Standard Model has been confirmed to stunning precision, at each new collider it is further scrutinized to ever-increasing precision. Measurements of Standard Model processes are an essential part of the physics program at the Tevatron and LHC proton colliders. Apart from challenging the theory in new energy regimes and phase spaces, they provide the means to search for extensions of the Standard Model and give confidence in the tools used for new physics searches. Indeed, deviations from Standard Model predictions may be the first indications for physics beyond the Standard Model. In these lectures, the experimental methods used at the LHC and Tevatron will be discussed and results presented on QCD and electroweak processes, as well as on the study of properties of the top quark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    They also inform the interaction between particle and astro-particle physics.

  2. 2.

    Recently the cross section has been determined in full NNLO QCD corrections with NNLL soft gluon summation [58]. They obtain an improved precision of 172\(_{-7.5}^{+6}\) pb, and 245.8\(_{-10.6}^{+8.8}\) pb respectively.

  3. 3.

    Measurements support this hypothesis.

  4. 4.

    A complementary method has recently been suggested [74].

  5. 5.

    In principle also quarks can be used. As long as a fermion from the W decay can be distinguished from its anti-fermion, the W boson helicity can be measured. This is very challenging and only possible for a few quark species. Methods exist to identify e.g. the charge of a charm quark jet; however, these are rather inefficient.

References

  1. G. Aad et al., ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al., CMS Collaboration, Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  3. G. Aad et al., ATLAS Collaboration, JINST 3, S08003 (2008)

    Article  ADS  Google Scholar 

  4. S. Chatrchyan et al., CMS Collaboration, JINST 3, S08004 (2008)

    ADS  Google Scholar 

  5. R.L. Gluckstern, Nucl. Instrum. Methods 24, 381 (1963)

    Article  ADS  Google Scholar 

  6. S. Chatrchyan et al., CMS Collaboration, JINST 7, P10002 (2012)

    Article  Google Scholar 

  7. G. Aad et al., ATLAS Collaboration, ATLAS-CONF-2012-043 (2012)

    Google Scholar 

  8. J.M. Campbell, J.W. Huston, W.J. Stirling, Rept. Prog. Phys. 70, 89 (2007)

    Article  ADS  Google Scholar 

  9. J. Beringer et al., Particle Data Group Collaboration, Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  10. P. Mättig, Phys. Rept. 177, 141 (1989); I.G. Knowles, G.D. Lafferty, J. Phys. G 23, 731 (1997)

    Google Scholar 

  11. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008); T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001)

    Google Scholar 

  12. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, JHEP 0101, 010 (2001)

    Article  ADS  Google Scholar 

  13. M.H. Seymour, M. Marx, (2013), arXiv:1304.6677 [hep-ph]

    Google Scholar 

  14. G. Aad et al., ATLAS Collaboration, New J. Phys. 13, 053033 (2011)

    Google Scholar 

  15. V. Khachatryan et al., CMS Collaboration, Phys. Rev. Lett. 105, 022002 (2010); B. Abelev et al., ALICE Collaboration, JHEP 1207, 116 (2012)

    Google Scholar 

  16. V.M. Abazov et al., D0 Collaboration, Phys. Rev. D 81, 052012 (2010); G. Aad et al., ATLAS Collaboration, New J. Phys. 15, 033038 (2013)

    Google Scholar 

  17. M.G. Albrow et al., TeV4LHC QCD Working Group Collaboration, hep-ph/0610012, 2006

    Google Scholar 

  18. R. Field, Ann. Rev. Nucl. Part. Sci. 62, 453 (2012)

    Article  ADS  Google Scholar 

  19. S. Chatrchyan et al., CMS Collaboration, JHEP 1109, 109 (2011)

    Article  ADS  Google Scholar 

  20. S. Chatrchyan et al., CMS Collaboration, Eur. Phys. J. C 72, 2080 (2012)

    Article  ADS  Google Scholar 

  21. F.D. Aaron et al., H1 and ZEUS Collaboration, JHEP 1001, 109 (2010)

    Article  ADS  Google Scholar 

  22. M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804, 063 (2008)

    Article  ADS  Google Scholar 

  23. S. Chatrchyan et al., CMS Collaboration, CMS-PAS-PFT-10-002, 2010

    Google Scholar 

  24. G. Aad et al., ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013)

    Article  ADS  Google Scholar 

  25. S. Chatrchyan et al., CMS Collaboration, JINST 6, P11002 (2011)

    Article  ADS  Google Scholar 

  26. S. Chatrchyan et al., CMS Collaboration, Phys. Rev. D 87, 112002 (2013)

    Article  ADS  Google Scholar 

  27. G. Aad et al., ATLAS Collaboration, JHEP 1405, 059 (2014)

    Article  ADS  Google Scholar 

  28. G. Aad et al., ATLAS Collaboration, JHEP 1301, 029 (2013)

    Article  ADS  Google Scholar 

  29. E. Eichten, K.D. Lane, M.E. Peskin, Phys. Rev. Lett. 50, 811 (1983)

    Article  ADS  Google Scholar 

  30. V. Khachatryan et al., CMS Collaboration, Phys. Rev. Lett. 106, 122003 (2011)

    Article  ADS  Google Scholar 

  31. V.M. Abazov et al., D0 Collaboration, Phys. Lett. B 718, 56 (2012)

    Article  ADS  Google Scholar 

  32. M.H. Seymour, Z. Phys. C 62, 127 (1994)

    Google Scholar 

  33. G. Aad et al., ATLAS Collaboration, JHEP 1205, 128 (2012)

    Article  ADS  Google Scholar 

  34. T. Aaltonen et al., CDF Collaboration, Phys. Rev. D 85, 091101 (2012)

    Article  ADS  Google Scholar 

  35. G. Aad et al., ATLAS Collaboration, Phys. Lett. B 720, 32 (2013)

    Article  ADS  Google Scholar 

  36. S. Chatrchyan et al., CMS Collaboration, CMS-PAS-SMP-12-011, 2012

    Google Scholar 

  37. S. Chatrchyan et al., CMS Collaboration, Phys. Rev. Lett. 109, 111806 (2012)

    Article  ADS  Google Scholar 

  38. S. Chatrchyan et al., CMS Collaboration, CMS-PAS-EXO-12-061, 2012; S. Chatrchyan et al., CMS Collaboration, CMS-PAS-EXO-12-060, 2012

    Google Scholar 

  39. F.A. Berends, W.T. Giele, H. Kuijf, R. Kleiss, W.J. Stirling, Phys. Lett. B 224, 237 (1989)

    Article  ADS  Google Scholar 

  40. S. Chatrchyan et al., CMS Collaboration, JHEP 1201, 010 (2012)

    Article  ADS  Google Scholar 

  41. G. Aad et al., ATLAS Collaboration, JHEP 1307, 032 (2013)

    Article  ADS  Google Scholar 

  42. G. Aad et al., ATLAS Collaboration, Phys. Lett. B 708, 221 (2012)

    Article  ADS  Google Scholar 

  43. S. Chatrchyan et al., CMS Collaboration, CMS-PAS-SMP-12-003, 2012; S. Chatrchyan et al., CMS Collaboration, JHEP 1206, 126 (2012); G. Aad et al., ATLAS Collaboration, Phys. Lett. B 706, 295 (2012)

    Google Scholar 

  44. G. Aad et al., ATLAS Collaboration, JHEP 1306, 084 (2013)

    Article  ADS  Google Scholar 

  45. Z. Bern, G. Diana, L.J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, S. Hoeche, H. Ita et al., Phys. Rev. D 84, 034008 (2011)

    Article  ADS  Google Scholar 

  46. G. Aad et al., ATLAS Collaboration, Eur. Phys. J. C 72, 2001 (2012)

    Article  ADS  Google Scholar 

  47. S. Chatrchyan et al., CMS Collaboration, Phys. Lett. B 718, 752 (2013)

    Article  ADS  Google Scholar 

  48. S. Schael et al., ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations, Phys. Rept. 532, 119 (2013)

    Article  Google Scholar 

  49. V.M. Abazov et al., D0 Collaboration, Phys. Rev. Lett. 108, 151804 (2012)

    Article  ADS  Google Scholar 

  50. T. Aaltonen et al., CDF Collaboration, Phys. Rev. Lett. 108, 151803 (2012)

    Article  ADS  Google Scholar 

  51. The Tevatron Electroweak Working Group, CDF and D0 Collaborations, (2012), arXiv:1204.0042 [hep-ex]

    Google Scholar 

  52. H. Aihara, T. Barklow, U. Baur, J. Busenitz, S. Errede, T.A. Fuess, T. Han, D. London et al., hep-ph/9503425, 1995

    Google Scholar 

  53. G. Aad et al., ATLAS Collaboration, Phys. Rev. D 87, 112001 (2013)

    Article  ADS  Google Scholar 

  54. T. Aaltonen et al., CDF and D0 Collaborations, Phys. Rev. D 86, 092003 (2012)

    Article  ADS  Google Scholar 

  55. S. Chatrchyan et al., CMS Collaboration, CMS-PAS-TOP-12-003, 2012; S. Chatrchyan et al., CMS Collaboration, CMS-PAS-TOP-12-007, 2012

    Google Scholar 

  56. M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, Comput. Phys. Commun. 182, 1034 (2011)

    Article  ADS  MATH  Google Scholar 

  57. M. Cacciari, M. Czakon, M. Mangano, A. Mitov, P. Nason, Phys. Lett. B 710, 612 (2012); N. Kidonakis, Phys. Rev. D 82, 114030 (2010); Phys. Rev. D 84, 011504 (2011), arXiv:1205.3453

    Google Scholar 

  58. M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 110, 252004 (2013)

    Article  ADS  Google Scholar 

  59. CMS Collaboration, http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOPSummaryPlots

  60. S. Chatrchyan et al., CMS Collaboration, Eur. Phys. J. C 73, 2339 (2013)

    Article  ADS  Google Scholar 

  61. G. Aad et al., ATLAS Collaboration, Phys. Lett. B 716, 142 (2012); G. Aad et al., ATLAS Collaboration, ATLAS-CONF-2011-153; S. Chatrchyan et al., CMS Collaboration, CMS-PAS-TOP-12-014, 2012

    Google Scholar 

  62. G. Aad et al., ATLAS Collaboration, Eur. Phys. J. C 72, 2083 (2012)

    Article  ADS  Google Scholar 

  63. G. Aad et al., ATLAS Collaboration, JHEP 1209, 041 (2012)

    Article  ADS  Google Scholar 

  64. R. Frederix, F. Maltoni, JHEP 0901, 047 (2009)

    Article  ADS  Google Scholar 

  65. G. Aad et al., ATLAS Collaboration, Phys. Rev. D 88, 012004 (2013)

    Article  ADS  Google Scholar 

  66. S. Chatrchyan et al., CMS Collaboration, JHEP 1212, 105 (2012)

    Article  ADS  Google Scholar 

  67. T. Aaltonen et al., CDF and D0 Collaborations, Phys. Rev. D 86, 092003 (2012)

    Article  ADS  Google Scholar 

  68. P.Z. Skands, D. Wicke, Eur. Phys. J. C 52, 133 (2007)

    Article  ADS  Google Scholar 

  69. S. Frixione, B.R. Webber, JHEP 0206, 029 (2002)

    Article  ADS  Google Scholar 

  70. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307, 001 (2003)

    Article  ADS  Google Scholar 

  71. V.M. Abazov et al., D0 Collaborations, Phys. Lett. B 703, 403 (2011)

    Article  ADS  Google Scholar 

  72. S. Moch, P. Uwer, Phys. Rev. D 78, 034003 (2008); U. Langenfeld, S. Moch, P. Uwer, Phys. Rev. D 80, 054009 (2009)

    Google Scholar 

  73. V.M. Abazov et al., D0 Collaboration, Phys. Lett. B 703, 422 (2011)

    Article  ADS  Google Scholar 

  74. S. Alioli, P. Fernandez, J. Fuster, A. Irles, S.-O. Moch, P. Uwer, M. Vos, Eur. Phys. J. C 73, 2438 (2013)

    Article  ADS  Google Scholar 

  75. G. Aad et al., ATLAS Collaboration, ATLAS-CONF-2011-054, 2011; S. Chatrchyan et al., CMS Collaboration, CMS-PAS-TOP-11-008, 2011

    Google Scholar 

  76. C. Quigg, Rept. Prog. Phys. 70, 1019 (2007)

    Article  ADS  Google Scholar 

  77. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, JHEP 1208, 098 (2012)

    Article  ADS  Google Scholar 

  78. G. Aad et al., ATLAS Collaboration, JHEP 1206, 088 (2012)

    Article  ADS  Google Scholar 

  79. G. Aad et al., ATLAS Collaboration, Phys. Rev. Lett. 108, 212001 (2012)

    Article  ADS  Google Scholar 

  80. S. Chatrchyan et al., CMS Collaboration, CMS-PAS-TOP-12-011, 2012

    Google Scholar 

  81. ATLAS Collaboration, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/TOP/

Download references

Acknowledgements

I would like to thank the organisers of the Scottish Universites Summer School on Physics, especially Craig Buttar and Franz Muheim, for inviting me to this exciting school. It was a real pleasure to have the many discussions with so many high quality students. I very much enjoyed also for being introduced to Scottish history, landscape and spirits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mättig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mättig, P. (2015). Probing the Standard Model at Hadron Colliders. In: Gardi, E., Glover, N., Robson, A. (eds) LHC Phenomenology. Scottish Graduate Series. Springer, Cham. https://doi.org/10.1007/978-3-319-05362-2_4

Download citation

Publish with us

Policies and ethics