Advertisement

Modeling Responsiveness of Decentralized Service Discovery in Wireless Mesh Networks

  • Andreas Dittrich
  • Björn Lichtblau
  • Rafael Rezende
  • Miroslaw Malek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8376)

Abstract

In service networks, discovery plays a crucial role as a layer where providers can be published and enumerated. This work focuses on the responsiveness of the discovery layer, the probability to operate successfully within a deadline, even in the presence of faults. It proposes a hierarchy of stochastic models for decentralized discovery and uses it to describe the discovery of a single service using three popular protocols. A methodology to use the model hierarchy in wireless mesh networks is introduced. Given a pair requester and provider, a discovery protocol and a deadline, it generates specific model instances and calculates responsiveness. Furthermore, this paper introduces a new metric, the expected responsiveness distance d er , to estimate the maximum distance from a provider where requesters can still discover it with a required responsiveness. Using monitoring data from the DES testbed at Freie Universität Berlin, it is shown how responsiveness and d er of the protocols change depending on the position of nodes and the link qualities in the network.

Keywords

Real-time systems Responsiveness Service discovery Wireless mesh networks Markov Models Probabilistic Breadth-First Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Wang, X.: A survey on wireless mesh networks. IEEE Communications Magazine 43(9), S23–S30 (2005)Google Scholar
  2. 2.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  3. 3.
    Blywis, B., Günes, M., Juraschek, F., Hahm, O.: Properties and topology of the DES-testbed. Tech. Rep. TR-B-11-02, FU Berlin, Germany (March 2011)Google Scholar
  4. 4.
    Bohnenkamp, H., van der Stok, P., Hermanns, H., Vaandrager, F.: Cost-optimization of the IPv4 zeroconf protocol. In: International Conference on Dependable Systems and Networks, pp. 531–540. IEEE (June 2003)Google Scholar
  5. 5.
    Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for multi-hop wireless routing. In: 9th Annual International Conference on Mobile Computing and Networking, pp. 134–146. ACM (2003)Google Scholar
  6. 6.
    Dabrowski, C.E., Mills, K.L.: Understanding self-healing in service-discovery systems. In: Workshop on Self-healing Systems (WOSS), pp. 15–20. ACM (2002)Google Scholar
  7. 7.
    Dabrowski, C.E., Mills, K.L., Elder, J.: Understanding consistency maintenance in service discovery architectures during communication failure. In: 3rd International Workshop on Software and Performance (WOSP), pp. 168–178. ACM (2002)Google Scholar
  8. 8.
    Dabrowski, C.E., Mills, K.L., Elder, J.: Understanding consistency maintenance in service discovery architectures in response to message loss. In: 4th Annual International Workshop on Active Middleware Services, pp. 51–60 (2002)Google Scholar
  9. 9.
    Dittrich, A., Kaitovic, I., Murillo, C., Rezende, R.: A model for evaluation of user-perceived service properties. In: International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1508–1517. IEEE (May 2013)Google Scholar
  10. 10.
    Dittrich, A., Salfner, F.: Experimental responsiveness evaluation of decentralized service discovery. In: International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–7. IEEE (April 2010)Google Scholar
  11. 11.
    Edwards, W.K.: Discovery systems in ubiquitous computing. IEEE Pervasive Computing 5(2), 70–77 (2006)CrossRefGoogle Scholar
  12. 12.
    IEEE standard for information technology – telecommunications and information exchange between systems – […]. IEEE Std 802.11-2012. IEEE Standards Association, pp. 1–2793 (2012)Google Scholar
  13. 13.
    Lichtblau, B., Dittrich, A.: Probabilistic breadth-first search – a method for evaluation of network-wide broadcast protocols. In: International Conference on New Technologies, Mobility and Security (NTMS). IEEE (to appear, April 2014)Google Scholar
  14. 14.
    Malek, M.: Responsive systems: A marriage between real time and fault tolerance. In: Cin, M.D., Hohl, W. (eds.) Fault-Tolerant Computing Systems, Informatik-Fachberichte, vol. 283, pp. 1–17. Springer (1991)Google Scholar
  15. 15.
    Milanovic, N., Milic, B.: Automatic generation of service availability models. IEEE Trans. on Services Computing 4(1), 56–69 (2011)CrossRefGoogle Scholar
  16. 16.
    Naimi, A.M., Jacquet, P.: One-hop delay estimation in 802.11 ad hoc networks using the OLSR protocol. Tech. Rep. RR-5327, INRIA, Le Chesnay, France (2004)Google Scholar
  17. 17.
    Oliveira, R., Bernardo, L., Pinto, P.: Modelling delay on IEEE 802.11 MAC protocol for unicast and broadcast nonsaturated traffic. In: Wireless Communications and Networking Conference (WCNC), pp. 463–467. IEEE (March 2007)Google Scholar
  18. 18.
    Raptis, P., Vitsas, V., Paparrizos, K.: Packet delay metrics for IEEE 802.11 distributed coordination function. Mobile Networks and Applications 14(6), 772–781 (2009)CrossRefGoogle Scholar
  19. 19.
    Rezende, R., Dittrich, A., Malek, M.: User-perceived instantaneous service availability evaluation. In: Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 273–282. IEEE (December 2013)Google Scholar
  20. 20.
    Sahner, R.A., Trivedi, K.S.: Performance and reliability analysis using directed acyclic graphs. IEEE Trans. on Software Engineering SE-13 (10), 1105–1114 (1987)Google Scholar
  21. 21.
    Trivedi, K.S.: SHARPE (symbolic hierarchical automated reliability and performance evaluator). Software (February 2010), http://sharpe.pratt.duke.edu
  22. 22.
    Zhu, F., Mutka, M., Ni, L.: Service discovery in pervasive computing environments. IEEE Pervasive Computing 4, 81–90 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Dittrich
    • 1
  • Björn Lichtblau
    • 2
  • Rafael Rezende
    • 1
  • Miroslaw Malek
    • 1
  1. 1.Advanced Learning and Research Institute (ALaRI)Università della Svizzera italianaLuganoSwitzerland
  2. 2.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations