Modeling and Performance Analysis of a Node in Fault Tolerant Wireless Sensor Networks

  • Ruslan Krenzler
  • Hans Daduna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8376)


We develop a separable model for a referenced node in a fault tolerant (disruption tolerant) wireless sensor network, which encompasses the message queue of the node and an inner and an outer environment for describing details of the transmission protocols. We prove that the system has steady state of product form for the queue and its environment. We discuss several modifications and the relation of our approach to that in previous papers in the literature.


Wireless sensor nodes fault tolerant networks separability environment closed form steady state interacting processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boucherie, R.J.: A characterization of independence for competing Markov chains with applications to stochastic Petri nets. IEEE Transactions of Software Engineering 20(7), 536–544 (1994)CrossRefGoogle Scholar
  2. 2.
    Chiasserini, C.-F., Garetto, M.: An analytical model for wireless sensor networks with sleeping nodes. IEEE Transactions on Mobile Computing 5(12), 1706–1718 (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, Z., Lin, C., Wen, H., Yin, H.: An analytical model for evaluating IEEE 802.15.4 CSMA/CA protocol in low-rate wireless application. In: Advanced Information Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 899–904 (2007)Google Scholar
  4. 4.
    Jackson, J.R.: Networks of waiting lines. Operations Research 5, 518–521 (1957)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Jiang, L., Walrand, J.: A distributed CSMA algorithm for throughput and utility maximization in wireless networks. IEEE/ACM Transactions on Networking 18(3), 960–972 (2010)CrossRefGoogle Scholar
  6. 6.
    Krenzler, R., Daduna, H.: Loss systems in a random environment - steady state analysis. Preprint, Center of Mathematical Statistics und Stochastic Processes, University of Hamburg, No. 2012-04 (2012)Google Scholar
  7. 7.
    Krenzler, R., Daduna, H.: Loss systems in a random environment - embedded Markov chain analysis. Preprint, Center of Mathematical Statistics und Stochastic Processes, University of Hamburg, No. 2013-02 (2013)Google Scholar
  8. 8.
    Krishnamoorthy, A., Lakshmy, B., Manikandan, R.: A survey on inventory models with positive service time. OPSEARCH 48, 153–169 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Li, W.W.: Several characteristics of active/sleep model in wireless sensor networks. In: New Technologies, Mobility and Security (NTMS), pp. 1–5 (2011)Google Scholar
  10. 10.
    Liu, J., Tong Lee, T.: A framework for performance modeling of wireless sensor networks. In: 2005 IEEE International Conference on Communications, ICC 2005, vol. 2, pp. 1075–1081 (2005)Google Scholar
  11. 11.
    Mehmet Ali, M.K., Gu, H.: Performance analysis of a wireless sensor network. In: IEEE Wireless Communications and Networking Conference, vol. 2, pp. 1166–1171 (2006)Google Scholar
  12. 12.
    Qiu, T., Feng, L., Xia, F., Wu, G., Zhou, Y.: A packet buffer evaluation method exploiting queueing theory for wireless sensor networks. Computer Science and Information Systems 8(4), 1027–1049 (2011)CrossRefGoogle Scholar
  13. 13.
    Sauer, C., Daduna, H.: Availability formulas and performance measures for separable degradable networks. Economic Quality Control 18, 165–194 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Sauer, C., Daduna, H.: Separable networks with unreliable servers. In: Charzinski, J., Lehnert, R., Tran-Gia, P. (eds.) Providing QoS in Heterogeneous Environments. Teletraffic Science and Engineering, vol. 5b, pp. 821–830. Elsevier Science, Amsterdam (2003)Google Scholar
  15. 15.
    Schwarz, M., Sauer, C., Daduna, H., Kulik, R., Szekli, R.: M/M/1 queueing systems with inventory. Queueing Systems and Their Applications 54, 55–78 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Wang, Y., Dang, H., Wu, H.H.: A survey on analytic studies of Delay-Tolerant Mobile Sensor Networks. Wireless Communications and Mobile Computing 7, 1197–1208 (2007)CrossRefGoogle Scholar
  17. 17.
    Wu, H., Wang, Y., Dang, H., Lin, F.: Analytic, Simulation, and Empirical Evaluation of Delay/Fault-Tolerant Mobile Sensor Networks. IEEE Transactions on Wireless Communications 6(9), 3287–3296 (2007)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Li, W.: An energy-based stochastic model for wireless sensor networks. Wireless Sensor Networks 3(9), 322–328 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ruslan Krenzler
    • 1
  • Hans Daduna
    • 1
  1. 1.Department of Mathematics, Center of Mathematical Statistics and Stochastic ProcessesUniversity of HamburgGermany

Personalised recommendations