Skip to main content

Walking in Virtual Reality: Flexible Spaces and Other Techniques

  • Chapter
  • First Online:
The Visual Language of Technique

Abstract

In many virtual reality applications the virtual world is larger than the available physical workspace. Multiple mechanical solutions have been developed to support the exploration of large virtual environments. However, real walking is still the most immersive way of supporting locomotion in a virtual environment. Redirected walking techniques enable natural locomotion through large scale virtual worlds. In this chapter we briefly discuss some of the existing interfaces for walking and focus on existing approaches for redirected walking. We will concentrate specifically on spatial manipulation techniques and introduce a novel approach for their use—flexible spaces. This is a novel redirection technique that enables infinite real walking in virtual environments that do not require the replication of real world layouts. This approach allows designers of virtual environments to focus on the content of the virtual world independently of the implementation details imposed by real walking, thereby making spatial manipulation techniques more practical for use in a variety of application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowman, D., Kruijff, E., LaViola Jr, J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Boston (2005)

    Google Scholar 

  2. Kang, H.S., Jalil, M.K.A., Mailah, M.: A PC-based driving simulator using virtual reality technology. SIGGRAPH VRCAI, pp. 273–277. ACM Press, New York (2004)

    Google Scholar 

  3. Ranky, R., Sivak, M., Lewis, J. et al.: VRACK—Virtual Reality Augmented Cycling Kit: Design and Validation. In: IEEE Virtual Real. IEEE, pp. 135–138 (2010)

    Google Scholar 

  4. Usoh, M., Arthur, K., Whitton, M.C., et al.: Walking > walking-in-place > flying, in virtual environments. Comput. Graph. Interact. Tech. SIGGRAPH 99, 359–364 (1999)

    Google Scholar 

  5. Fels, S., Yohanan, S., Takahashi, S. et al.: User experiences with a virtual swimming interface exhibit. In: International Conference Entertainment Computing, Springer, pp. 433–444

    Google Scholar 

  6. Bruder, G., Steinicke, F., Hinrichs, K.H.: Arch-explore: a natural user interface for immersive architectural walkthroughs. In: IEEE 3DUI, pp. 75–82 (2009). doi: 10.1109/3DUI.2009.4811208

  7. Interrante, V., Ries, B., Anderson, L.: Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In: IEEE 3DUI (2007). doi: 10.1109/3DUI.2007.340791

  8. Bolte, B., Steinicke, F., Bruder, G.: The jumper metaphor: an effective navigation technique for immersive display setups. In: Proceedings of Virtual Reality International Conference (2011)

    Google Scholar 

  9. Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence Teleoperators Virtual Environ. 7, 168–178 (1998). doi:10.1162/105474698565659

    Article  Google Scholar 

  10. Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput. Interact. 16(1), 1–18 (2009)

    Article  Google Scholar 

  11. Suma, E.A., Finkelstein, S.L., Clark, S. et al.: Effects of travel technique and gender on a divided attention task in a virtual environment. In: IEEE 3DUI, pp. 27–34 (2010)

    Google Scholar 

  12. Zanbaka, C.A., Lok, B.C., Babu, A.C., et al.: Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Trans. Visual. Comput. Graph. 11(6), 694–705 (2005)

    Article  Google Scholar 

  13. Razzaque, S.: Redirected walking. UNC, Chapel Hill (2005)

    Google Scholar 

  14. Steinicke, F., Bruder, G., Jerald, J. et al.: Analyses of human sensitivity to redirected walking. In: VRST, pp. 149–156 (2008)

    Google Scholar 

  15. Suma, E.A., Clark, S., Krum, D., et al.: Leveraging change blindness for redirection in virtual environments. IEEE Virtual Real. Conf. 2011, 159–166 (2011). doi:10.1109/VR.2011.5759455

    Google Scholar 

  16. Suma, E.A., Lipps, Z., Finkelstein, S., et al.: Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Vis. Comput. Graph. 18(4), 555–564 (2012). doi:10.1109/TVCG.2012.47

    Article  Google Scholar 

  17. Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: dynamic layout generation for infinite walking in virtual environments. In IEEE 3DUI, pp. 39–42 (2013) doi: 10.1109/3DUI.2013.6550194

  18. Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: low-latency, continuous-motion walking-in-place. In: IEEE Symposium on 3D User Interfaces. IEEE, pp. 97–104 (2008)

    Google Scholar 

  19. Iwata, H., Fujii, T.: Virtual perambulator: a novel interface device for locomotion in virtual environment. In: Virtual Reality Annual International Symposium, IEEE, pp. 60–65 (1996)

    Google Scholar 

  20. Iwata, H., Hiroaki, Y., Tomioka, H.: Powered Shoes. In: SIGGRAPH 2006 Emerging technologies (2006)

    Google Scholar 

  21. Virtuix Omni: http://www.virtuix.com/

  22. Cyberith Virtualizer: http://www.cyberith.com/

  23. Bouguila, L., Sato, M.: Virtual locomotion system for large-scale virtual environment. In: Proceedings of IEEE Virtual Reality, vol. 227 (2002). doi: 10.1109/VR.2002.996544

  24. De Luca, A., Mattone, R., Robuffo Giordano P. et al.: Motion control of the cybercarpet platform. In: IEEE Transaction on Control System Technology pp. 1–17 (2012). doi: 10.1109/TCST.2012.2185051

  25. Iwata, H., Yano, H., Fukushima, H., Noma, H.: CirculaFloor. IEEE Comput. Graph. Appl. IEEE Comput. Soc. 25, 64–67 (2005)

    Article  Google Scholar 

  26. Iwata, H.: Locomotion Interfaces. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds.) Human Walking in Virtual Environments, pp. 199–219. Springer, New York (2013)

    Chapter  Google Scholar 

  27. Williams, B., Narasimham, G., Rump, B. et al.: Exploring large virtual environments with an HMD when physical space is limited. In: APGV, pp. 41–48 (2007)

    Google Scholar 

  28. Peck, T.C., Whitton, M.C., Fuchs, H.: Evaluation of reorientation techniques for walking in large virtual environments. IEEE Virtual. Real. Conf. 15, 121–127 (2008). doi:10.1109/VR.2008.4480761

    Google Scholar 

  29. Field, T., Bay, S., Vamplew, P.: Generalised algorithms for redirected walking in virtual environments. In: International Conference on Artificial Intelligence in Science and Technology, pp. 1357–1366 (2004)

    Google Scholar 

  30. Peck, T.C., Fuchs, H., Whitton, M.C.: Improved redirection with distractors: a large-scale-real-walking locomotion interface and its effect on navigation in virtual environments. IEEE Virtual Real. Conf. 2010, 35–38 (2010). doi:10.1109/VR.2010.5444816

    Google Scholar 

  31. Steinicke, F., Bruder, G., Jerald, J., et al.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16, 17–27 (2010). doi:10.1109/TVCG.2009.62

    Article  Google Scholar 

  32. Simons, D.J., Rensink, R.A.: Change blindness: past, present, and future. Trends Cogn. Sci. 9, 16–20 (2005). doi:10.1016/j.tics.2004.11.006

    Article  Google Scholar 

  33. Bruder, G., Steinicke, F., Wieland, P.: Self-motion illusions in immersive virtual reality environments. In: IEEE Virtual Reality. IEEE, pp. 39–46 (2011)

    Google Scholar 

  34. Vinson, N.G.: Design guidelines for landmarks to support navigation in virtual environments. In: Conference on Human Factors in Computing Systems. ACM Press, New York, NY, USA, p. 8 (1999)

    Google Scholar 

  35. Foo, P., Warren, W.H., Duchon, A., Tarr, M.J.: Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215 (2005). doi:10.1037/0278-7393.31.2.195

    Article  Google Scholar 

  36. Moar, I., Bower, G.H.: Inconsistency in spatial knowledge. Mem. Cognit. 11, 107–113 (1983)

    Article  Google Scholar 

  37. Scholl, B.J.: Objects and attention: the state of the art. Cognition 80, 1–46 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Vienna PhD School of Informatics and USC Institute for Creative Technologies under W91 1NF-04-D-0005. The authors thank Evan Suma, Mark Bolas, Adam Jones, and Thai Phan from the USC ICT Mixed Reality Lab for their support during the initial development of flexible spaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khrystyna Vasylevska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vasylevska, K., Podkosova, I., Kaufmann, H. (2015). Walking in Virtual Reality: Flexible Spaces and Other Techniques. In: Cocchiarella, L. (eds) The Visual Language of Technique. Springer, Cham. https://doi.org/10.1007/978-3-319-05341-7_7

Download citation

Publish with us

Policies and ethics