Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 825 Accesses

Abstract

The gyroid geometry topology discussed above was used as a starting point to create a further complex architecture, the hollow-gyroid with an increased surface area and strongly enhanced optical transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Hofman group, Department of Engineering, University of Cambridge.

References

  1. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Springer, New York

    Book  Google Scholar 

  2. González-Díaz JB, García-Martín A, Armelles G, Navas D, Vázquez M, Nielsch K, Wehrspohn RB, Gösele U (2007) Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Adv Mater 19(18):2643–2647

    Article  Google Scholar 

  3. Valev VK, Silhanek AV, Gillijns W, Jeyaram Y, Paddubrouskaya H, Volodin A, Biris CG, Panoiu NC, De Clercq B, Ameloot M et al (2010) Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5(1):91–96

    Article  Google Scholar 

  4. Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94(7):4632–4642

    Article  ADS  Google Scholar 

  5. Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) Magnetic-plasmonic core-shell nanoparticles. ACS Nano 3(6):1379–1388

    Article  Google Scholar 

  6. Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J-M, Thomay T, Leitenstorfer A, Bratschitsch R (2010) Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nat Photonics 4(2):107–111

    Article  ADS  Google Scholar 

  7. Zhang Q, Jiang T, Feng Y (2011) Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding. J Phys D Appl Phys 44(47):475103

    Article  ADS  Google Scholar 

  8. Kidambi PR, Ducati C, Dlubak B, Gardiner D, Weatherup RS, Martin M-B, Seneor P, Coles H, Hofmann S (2012) The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J Phys Chem C 116(42):22492–22501

    Article  Google Scholar 

  9. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197

    Article  Google Scholar 

  10. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (vgcfs) basic properties and their battery applications. Carbon 39(9):1287–1297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Salvatore .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salvatore, S. (2015). Hollow Gyroid. In: Optical Metamaterials by Block Copolymer Self-Assembly. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05332-5_6

Download citation

Publish with us

Policies and ethics